版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆新疆兵團(tuán)第二師華山中學(xué)高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知分別為雙曲線的左、右焦點(diǎn),過的直線與雙曲線的左、右兩支分別交于兩點(diǎn),若,則雙曲線的離心率為()A. B.4 C.2 D.2.已知函數(shù)的圖象向左平移個(gè)單位后得到函數(shù)的圖象,則的最小值為()A. B. C. D.3.如圖是一個(gè)幾何體的三視圖,則該幾何體的體積為()A. B. C. D.4.設(shè)是兩條不同的直線,是兩個(gè)不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則5.已知復(fù)數(shù)滿足,則=()A. B.C. D.6.已知將函數(shù)(,)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,若和的圖象都關(guān)于對(duì)稱,則下述四個(gè)結(jié)論:①②③④點(diǎn)為函數(shù)的一個(gè)對(duì)稱中心其中所有正確結(jié)論的編號(hào)是()A.①②③ B.①③④ C.①②④ D.②③④7.已知四棱錐的底面為矩形,底面,點(diǎn)在線段上,以為直徑的圓過點(diǎn).若,則的面積的最小值為()A.9 B.7 C. D.8.設(shè),點(diǎn),,,,設(shè)對(duì)一切都有不等式成立,則正整數(shù)的最小值為()A. B. C. D.9.執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關(guān)于的判斷條件是()A. B. C. D.10.在中,,,分別為角,,的對(duì)邊,若的面為,且,則()A.1 B. C. D.11.在長(zhǎng)方體中,,則直線與平面所成角的余弦值為()A. B. C. D.12.如圖,在平面四邊形ABCD中,若點(diǎn)E為邊CD上的動(dòng)點(diǎn),則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的最小正周期為________;若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為________.14.記數(shù)列的前項(xiàng)和為,已知,且.若,則實(shí)數(shù)的取值范圍為________.15.設(shè)第一象限內(nèi)的點(diǎn)(x,y)滿足約束條件,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為40,則+的最小值為_____.16.函數(shù)的極大值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的短軸的兩個(gè)端點(diǎn)分別為、,焦距為.(1)求橢圓的方程;(2)已知直線與橢圓有兩個(gè)不同的交點(diǎn)、,設(shè)為直線上一點(diǎn),且直線、的斜率的積為.證明:點(diǎn)在軸上.18.(12分)在平面直角坐標(biāo)系中,曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動(dòng)點(diǎn),求的最大值.19.(12分)武漢有“九省通衢”之稱,也稱為“江城”,是國(guó)家歷史文化名城.其中著名的景點(diǎn)有黃鶴樓、戶部巷、東湖風(fēng)景區(qū)等等.(1)為了解“五·一”勞動(dòng)節(jié)當(dāng)日江城某旅游景點(diǎn)游客年齡的分布情況,從年齡在22歲到52歲的游客中隨機(jī)抽取了1000人,制成了如圖的頻率分布直方圖:現(xiàn)從年齡在內(nèi)的游客中,采用分層抽樣的方法抽取10人,再從抽取的10人中隨機(jī)抽取4人,記4人中年齡在內(nèi)的人數(shù)為,求;(2)為了給游客提供更舒適的旅游體驗(yàn),該旅游景點(diǎn)游船中心計(jì)劃在2020年勞動(dòng)節(jié)當(dāng)日投入至少1艘至多3艘型游船供游客乘坐觀光.由2010到2019這10年間的數(shù)據(jù)資料顯示每年勞動(dòng)節(jié)當(dāng)日客流量(單位:萬人)都大于1.將每年勞動(dòng)節(jié)當(dāng)日客流量數(shù)據(jù)分成3個(gè)區(qū)間整理得表:勞動(dòng)節(jié)當(dāng)日客流量頻數(shù)(年)244以這10年的數(shù)據(jù)資料記錄的3個(gè)區(qū)間客流量的頻率作為每年客流量在該區(qū)間段發(fā)生的概率,且每年勞動(dòng)節(jié)當(dāng)日客流量相互獨(dú)立.該游船中心希望投入的型游船盡可能被充分利用,但每年勞動(dòng)節(jié)當(dāng)日型游船最多使用量(單位:艘)要受當(dāng)日客流量(單位:萬人)的影響,其關(guān)聯(lián)關(guān)系如下表:勞動(dòng)節(jié)當(dāng)日客流量型游船最多使用量123若某艘型游船在勞動(dòng)節(jié)當(dāng)日被投入且被使用,則游船中心當(dāng)日可獲得利潤(rùn)3萬元;若某艘型游船勞動(dòng)節(jié)當(dāng)日被投入?yún)s不被使用,則游船中心當(dāng)日虧損0.5萬元.記(單位:萬元)表示該游船中心在勞動(dòng)節(jié)當(dāng)日獲得的總利潤(rùn),的數(shù)學(xué)期望越大游船中心在勞動(dòng)節(jié)當(dāng)日獲得的總利潤(rùn)越大,問該游船中心在2020年勞動(dòng)節(jié)當(dāng)日應(yīng)投入多少艘型游船才能使其當(dāng)日獲得的總利潤(rùn)最大?20.(12分)已知函數(shù),函數(shù)().(1)討論的單調(diào)性;(2)證明:當(dāng)時(shí),.(3)證明:當(dāng)時(shí),.21.(12分)在四棱柱中,底面為正方形,,平面.(1)證明:平面;(2)若,求二面角的余弦值.22.(10分)如圖,在平面直角坐標(biāo)系中,橢圓的離心率為,且過點(diǎn).求橢圓的方程;已知是橢圓的內(nèi)接三角形,①若點(diǎn)為橢圓的上頂點(diǎn),原點(diǎn)為的垂心,求線段的長(zhǎng);②若原點(diǎn)為的重心,求原點(diǎn)到直線距離的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【詳解】.又,可令,則.設(shè),得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是由向量數(shù)量積為0得出垂直關(guān)系,利用雙曲線的定義把雙曲線上的點(diǎn)到焦點(diǎn)的距離都用表示出來,從而再由勾股定理建立的關(guān)系.2、A【解析】
首先求得平移后的函數(shù),再根據(jù)求的最小值.【詳解】根據(jù)題意,的圖象向左平移個(gè)單位后,所得圖象對(duì)應(yīng)的函數(shù),所以,所以.又,所以的最小值為.故選:A【點(diǎn)睛】本題考查三角函數(shù)的圖象變換,誘導(dǎo)公式,意在考查平移變換,屬于基礎(chǔ)題型.3、A【解析】
根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.【點(diǎn)睛】本題考查三視圖及棱柱的體積,屬于基礎(chǔ)題.4、C【解析】
在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設(shè)是兩條不同的直線,是兩個(gè)不同的平面,則:在A中,若,,則與相交或平行,故A錯(cuò)誤;在B中,若,,則或,故B錯(cuò)誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯(cuò)誤.故選C.【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),是中檔題.5、B【解析】
利用復(fù)數(shù)的代數(shù)運(yùn)算法則化簡(jiǎn)即可得到結(jié)論.【詳解】由,得,所以,.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.6、B【解析】
首先根據(jù)三角函數(shù)的平移規(guī)則表示出,再根據(jù)對(duì)稱性求出、,即可求出的解析式,從而驗(yàn)證可得;【詳解】解:由題意可得,又∵和的圖象都關(guān)于對(duì)稱,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯(cuò)誤.故選:B【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì)的應(yīng)用,三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.7、C【解析】
根據(jù)線面垂直的性質(zhì)以及線面垂直的判定,根據(jù)勾股定理,得到之間的等量關(guān)系,再用表示出的面積,利用均值不等式即可容易求得.【詳解】設(shè),,則.因?yàn)槠矫?,平面,所?又,,所以平面,則.易知,.在中,,即,化簡(jiǎn)得.在中,,.所以.因?yàn)?,?dāng)且僅當(dāng),時(shí)等號(hào)成立,所以.故選:C.【點(diǎn)睛】本題考查空間幾何體的線面位置關(guān)系及基本不等式的應(yīng)用,考查空間想象能力以及數(shù)形結(jié)合思想,涉及線面垂直的判定和性質(zhì),屬中檔題.8、A【解析】
先求得,再求得左邊的范圍,只需,利用單調(diào)性解得t的范圍.【詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數(shù)的最小值為3.【點(diǎn)睛】本題考查了數(shù)列的通項(xiàng)及求和問題,考查了數(shù)列的單調(diào)性及不等式的解法,考查了轉(zhuǎn)化思想,屬于中檔題.9、B【解析】
根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結(jié)束循環(huán),即可得出判斷條件.【詳解】執(zhí)行框圖如下:初始值:,第一步:,此時(shí)不能輸出,繼續(xù)循環(huán);第二步:,此時(shí)不能輸出,繼續(xù)循環(huán);第三步:,此時(shí)不能輸出,繼續(xù)循環(huán);第四步:,此時(shí)不能輸出,繼續(xù)循環(huán);第五步:,此時(shí)不能輸出,繼續(xù)循環(huán);第六步:,此時(shí)要輸出,結(jié)束循環(huán);故,判斷條件為.故選B【點(diǎn)睛】本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結(jié)合輸出結(jié)果,即可確定判斷條件,屬于常考題型.10、D【解析】
根據(jù)三角形的面積公式以及余弦定理進(jìn)行化簡(jiǎn)求出的值,然后利用兩角和差的正弦公式進(jìn)行求解即可.【詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【點(diǎn)睛】本題主要考查解三角形的應(yīng)用,結(jié)合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進(jìn)行計(jì)算是解決本題的關(guān)鍵.11、C【解析】
在長(zhǎng)方體中,得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結(jié)論.【詳解】在長(zhǎng)方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.【點(diǎn)睛】本題考查直線與平面所成的角,定義法求空間角要體現(xiàn)“做”“證”“算”,三步驟缺一不可,屬于基礎(chǔ)題.12、A【解析】
分析:由題意可得為等腰三角形,為等邊三角形,把數(shù)量積分拆,設(shè),數(shù)量積轉(zhuǎn)化為關(guān)于t的函數(shù),用函數(shù)可求得最小值。詳解:連接BD,取AD中點(diǎn)為O,可知為等腰三角形,而,所以為等邊三角形,。設(shè)=所以當(dāng)時(shí),上式取最小值,選A.點(diǎn)睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時(shí)利用向量共線轉(zhuǎn)化為函數(shù)求最值。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
直接計(jì)算得到答案,根據(jù)題意得到,,解得答案.【詳解】,故,當(dāng)時(shí),,故,解得.故答案為:;.【點(diǎn)睛】本題考查了三角函數(shù)的周期和單調(diào)性,意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)的綜合應(yīng)用.14、【解析】
根據(jù)遞推公式,以及之間的關(guān)系,即可容易求得,再根據(jù)數(shù)列的單調(diào)性,求得其最大值,則參數(shù)的范圍可求.【詳解】當(dāng)時(shí),,解得.所以.因?yàn)?,則,兩式相減,可得,即,則.兩式相減,可得.所以數(shù)列是首項(xiàng)為3,公差為2的等差數(shù)列,所以,則.令,則.當(dāng)時(shí),,數(shù)列單調(diào)遞減,而,,,故,即實(shí)數(shù)的取值范圍為.故答案為:.【點(diǎn)睛】本題考查由遞推公式求數(shù)列的通項(xiàng)公式,涉及數(shù)列單調(diào)性的判斷,屬綜合困難題.15、【解析】不等式表示的平面區(qū)域陰影部分,當(dāng)直線ax+by=z(a>0,b>0)過直線x?y+2=0與直線2x?y?6=0的交點(diǎn)(8,10)時(shí),目標(biāo)函數(shù)z=ax+by(a>0,b>0)取得最大40,即8a+10b=40,即4a+5b=20,而當(dāng)且僅當(dāng)時(shí)取等號(hào),則的最小值為.16、【解析】
對(duì)函數(shù)求導(dǎo),根據(jù)函數(shù)單調(diào)性,即可容易求得函數(shù)的極大值.【詳解】依題意,得.所以當(dāng)時(shí),;當(dāng)時(shí),.所以當(dāng)時(shí),函數(shù)有極大值.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),考查運(yùn)算求解能力以及化歸轉(zhuǎn)化思想,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】
(1)由已知條件得出、的值,進(jìn)而可得出的值,由此可求得橢圓的方程;(2)設(shè)點(diǎn),可得,且,,求出直線的斜率,進(jìn)而可求得直線與的方程,將直線直線與的方程聯(lián)立,求出點(diǎn)的坐標(biāo),即可證得結(jié)論.【詳解】(1)由題設(shè),得,所以,即.故橢圓的方程為;(2)設(shè),則,,.所以直線的斜率為,因?yàn)橹本€、的斜率的積為,所以直線的斜率為.直線的方程為,直線的方程為.聯(lián)立,解得點(diǎn)的縱坐標(biāo)為.因?yàn)辄c(diǎn)在橢圓上,所以,則,所以點(diǎn)在軸上.【點(diǎn)睛】本題考查橢圓方程的求解,同時(shí)也考查了點(diǎn)在定直線的證明,考查計(jì)算能力與推理能力,屬于中等題.18、(1),;(2)【解析】試題分析:(1)由消去參數(shù),可得的普通方程,由可得的普通方程;(2)設(shè)為曲線上一點(diǎn),點(diǎn)到曲線的圓心的距離,結(jié)合可得最值,的最大值為,從而得解.試題解析:(1)的普通方程為.∵曲線的極坐標(biāo)方程為,∴曲線的普通方程為,即.(2)設(shè)為曲線上一點(diǎn),則點(diǎn)到曲線的圓心的距離.∵,∴當(dāng)時(shí),d有最大值.又∵P,Q分別為曲線,曲線上動(dòng)點(diǎn),∴的最大值為.19、(1);(2)投入3艘型游船使其當(dāng)日獲得的總利潤(rùn)最大【解析】
(1)首先計(jì)算出在,內(nèi)抽取的人數(shù),然后利用超幾何分布概率計(jì)算公式,計(jì)算出.(2)分別計(jì)算出投入艘游艇時(shí),總利潤(rùn)的期望值,由此確定當(dāng)日游艇投放量.【詳解】(1)年齡在內(nèi)的游客人數(shù)為150,年齡在內(nèi)的游客人數(shù)為100;若采用分層抽樣的方法抽取10人,則年齡在內(nèi)的人數(shù)為6人,年齡在內(nèi)的人數(shù)為4人.可得.(2)①當(dāng)投入1艘型游船時(shí),因客流量總大于1,則(萬元).②當(dāng)投入2艘型游船時(shí),若,則,此時(shí);若,則,此時(shí);此時(shí)的分布列如下表:2.56此時(shí)(萬元).③當(dāng)投入3艘型游船時(shí),若,則,此時(shí);若,則,此時(shí);若,則,此時(shí);此時(shí)的分布列如下表:25.59此時(shí)(萬元).由于,則該游船中心在2020年勞動(dòng)節(jié)當(dāng)日應(yīng)投入3艘型游船使其當(dāng)日獲得的總利潤(rùn)最大.【點(diǎn)睛】本小題主要考查分層抽樣,考查超幾何分布概率計(jì)算公式,考查隨機(jī)變量分布列和期望的求法,考查分析與思考問題的能力,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.20、(1)答案不唯一,具體見解析(2)證明見解析(3)證明見解析【解析】
(1)求出的定義域,導(dǎo)函數(shù),對(duì)參數(shù)、分類討論得到答案.(2)設(shè)函數(shù),求導(dǎo)說明函數(shù)的單調(diào)性,求出函數(shù)的最大值,即可得證.(3)由(1)可知,可得,即又即可得證.【詳解】(1)解:的定義域?yàn)?,,?dāng),時(shí),,則在上單調(diào)遞增;當(dāng),時(shí),令,得,令,得,則在上單調(diào)遞減,在上單調(diào)遞增;當(dāng),時(shí),,則在上單調(diào)遞減;當(dāng),時(shí),令,得,令,得,則在上單調(diào)遞增,在上單調(diào)遞減;(2)證明:設(shè)函數(shù),則.因?yàn)?,所以,,則,從而在上單調(diào)遞減,所以,即.(3)證明:當(dāng)時(shí),.由(1)知,,所以,即.當(dāng)時(shí),,,則,即,又,所以,即.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性,利用導(dǎo)數(shù)證明不等式,屬于難題.21、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年簡(jiǎn)明日文個(gè)人借款合同模板版B版
- 2024年礦山運(yùn)輸設(shè)備租賃協(xié)議標(biāo)準(zhǔn)格式示例版
- 2024年跨區(qū)域能源輸送管道建設(shè)合同
- 二零二五年度公園夜間維護(hù)更夫合同書3篇
- 2025年度企業(yè)健康管理與福利保障合同2篇
- 物流大數(shù)據(jù)課程設(shè)計(jì)
- 幼兒園縫紉主題課程設(shè)計(jì)
- 2025年度體育場(chǎng)館租賃及賽事組織合同2篇
- 2024年重型機(jī)械設(shè)備維修與配件供應(yīng)合同
- 2024民辦學(xué)校教育信息化人員勞動(dòng)合同范本3篇
- TSG 51-2023 起重機(jī)械安全技術(shù)規(guī)程 含2024年第1號(hào)修改單
- 《正態(tài)分布理論及其應(yīng)用研究》4200字(論文)
- GB/T 45086.1-2024車載定位系統(tǒng)技術(shù)要求及試驗(yàn)方法第1部分:衛(wèi)星定位
- 浙江省杭州市錢塘區(qū)2023-2024學(xué)年四年級(jí)上學(xué)期英語期末試卷
- 1古詩文理解性默寫(教師卷)
- 廣東省廣州市越秀區(qū)2021-2022學(xué)年九年級(jí)上學(xué)期期末道德與法治試題(含答案)
- 2024-2025學(xué)年六上科學(xué)期末綜合檢測(cè)卷(含答案)
- 在線教育平臺(tái)合作合同助力教育公平
- 工地鋼板短期出租合同模板
- 女排精神課件教學(xué)課件
- 2024年湖南省公務(wù)員考試《行測(cè)》真題及答案解析
評(píng)論
0/150
提交評(píng)論