數(shù)電第4版 課件 19加法器_第1頁
數(shù)電第4版 課件 19加法器_第2頁
數(shù)電第4版 課件 19加法器_第3頁
數(shù)電第4版 課件 19加法器_第4頁
數(shù)電第4版 課件 19加法器_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

3.5加法器加法器是計算機中的核心部件直接設(shè)計多位加法器太復(fù)雜,通常由1位加法器→N位加法器3.5.11位加法器(1)半加器真值表(2)輸出函數(shù)(3)邏輯圖(4)邏輯符號

輸入輸出被加數(shù)A

加數(shù)B

和S

進位CO00000110101011011.一位半加器

實現(xiàn)兩個一位二進制數(shù)相加,不考慮低位的進位.思考:一位半加器能構(gòu)成N位的加法器嗎?結(jié)論:半加器沒有考慮來自低位的進位,無法構(gòu)成N位的加法器。3.5.11位加法器2.一位全加器(1)作邏輯規(guī)定

A、B為加數(shù)和被加數(shù),CI為低位進位,S、CO為和及向高位進位。(2)真值表A

B

CI

S

CO

00000101001110010111011100101001100101113.5.11位加法器(2)邏輯表達式CO=AB+BCI+ACI

3.5.11位加法器(3)全加器邏輯電路圖和邏輯符號3.5.11位加法器3.N位加法器低位全加器進位輸出高位全加器進位輸入3.5.2N位加法器◆

功能:實現(xiàn)N位二進制數(shù)相加◆按實現(xiàn)方法分類:串行進位加法器、超前進位加法器(1)串行進位加法器3.5.2N位加法器

思考:2位串行進位加法器如圖所示。全加器輸入到S和CO的延遲分別為3tpd和2tpd。假設(shè)初始值A(chǔ)1A0=01和B1B0=11,如果A1A0變?yōu)?0,加法器的最大延遲為

tpd。5

tpd(2)超前進位加法器進位位直接由加數(shù)、被加數(shù)和最低位進位位CI0形成。3.5.2N位加法器(2)超前進位加法器定義進位生成函數(shù)Gi=AiBi和進位傳遞函數(shù)Pi=Ai+Bi。3.5.2N位加法器(2)超前進位加法器3.5.2N位加法器3.5.2N位加法器moduleADD4B(A,B,CIN,S,COUT);input[3:0]A;input[3:0]B;inputCIN;output[3:0]S;outputCOUT;wire[4:0]CRLT;assignCRLT={1'b0,A}+{1'b0,B}+{4'b0000,CIN};assignS=CRLT[3:0];assignCOUT=CRLT[4];endmodule4位加法器的Verilog代碼★74LS283邏輯符號加數(shù)被加數(shù)和低位進位進位3.5.2N位加法器5.加法器的應(yīng)用例3.5-1:試用四位加法器實現(xiàn)8421BCD碼至余3BCD碼的轉(zhuǎn)換。N位加法運算、代碼轉(zhuǎn)換、減法器、十進制加法;解:余3碼比8421碼多3,因此:3.5.2N位加法器3.5.3有符號加法器1.有符號數(shù)的原碼表示無符號數(shù)設(shè)二進制數(shù)x=+xn-2xn-3…x1x0,則[x]原=0

xn-2xn-3…x1x0。設(shè)二進制數(shù)x=-xn-2xn-3…x1x0,則[x]原=1

xn-2xn-3…x1x0。有符號數(shù)在二進制的原碼表示中,有正零和負零之分,即[+0]原=000…00,[-0]原=100…00。原碼的運算需要能夠?qū)崿F(xiàn)比較和相減的邏輯電路,使得電路構(gòu)造復(fù)雜。例:[-15]原+[+30]原=?計算錯誤為了簡化硬件電路,在數(shù)字電路或者計算機中,有符號數(shù)通常采用補碼來表示。3.5.3有符號加法器一個二進制數(shù),如果以2n為模,它的補碼叫做2補碼,簡稱補碼。按照補碼定義,得到二進制數(shù)補碼的表示:當x為正數(shù),即x=+xn-2xn-3…x1x0,則當x為負數(shù),即x=-xn-2xn-3…x1x0,則2.有符號二進制數(shù)的補碼表示[x]補=0

xn-2xn-3…x1x0

=[x]原3.5.3有符號加法器將一個有符號數(shù)表示成二進制數(shù)的補碼有以下兩種方法:(1)根據(jù)補碼的定義求設(shè)x=5=00000101B(2)利用原碼求正數(shù)的補碼就是正數(shù)的原碼;負數(shù)的補碼等于原碼除符號位不變以外,其余各位按位取反再最低位加1。設(shè)x=(-5)10[x]原=10000101B[x]補=11111010B+1=11111011B3.5.3有符號加法器3.補碼的運算補碼表示的帶符號數(shù)進行加減運算時,把符號位也作為一個數(shù),進行運算。(1)補碼的加法[x]補+[y]補=[x+y]補兩個補碼直接相加,可以得到正確的結(jié)果,但要避免溢出。例:(+20)+(-17)=?解:3.5.3有符號加法器(2)補碼的減法采用補碼的好處是減法運算可以通過加法運算實現(xiàn),即減去一個數(shù)等于加上這個數(shù)的補碼。例:求(-56)-(-17)=?解:[-56]補-[-17]補=11001000B-11101111B=11001000B+00010001B

求一個數(shù)的補碼的方法是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論