教科版必修二第三章萬有引力定律同步測試題2025屆高三壓軸卷數(shù)學試卷含解析_第1頁
教科版必修二第三章萬有引力定律同步測試題2025屆高三壓軸卷數(shù)學試卷含解析_第2頁
教科版必修二第三章萬有引力定律同步測試題2025屆高三壓軸卷數(shù)學試卷含解析_第3頁
教科版必修二第三章萬有引力定律同步測試題2025屆高三壓軸卷數(shù)學試卷含解析_第4頁
教科版必修二第三章萬有引力定律同步測試題2025屆高三壓軸卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

教科版必修二第三章萬有引力定律同步測試題2025屆高三壓軸卷數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.盒中有6個小球,其中4個白球,2個黑球,從中任取個球,在取出的球中,黑球放回,白球則涂黑后放回,此時盒中黑球的個數(shù),則()A., B.,C., D.,2.已知復數(shù)滿足,則的共軛復數(shù)是()A. B. C. D.3.設,則(

)A.10 B.11 C.12 D.134.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.5.在中,,則=()A. B.C. D.6.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且7.在三棱錐中,,且分別是棱,的中點,下面四個結論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④8.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a9.下列說法正確的是()A.命題“,”的否定形式是“,”B.若平面,,,滿足,則C.隨機變量服從正態(tài)分布(),若,則D.設是實數(shù),“”是“”的充分不必要條件10.已知無窮等比數(shù)列的公比為2,且,則()A. B. C. D.11.用電腦每次可以從區(qū)間內自動生成一個實數(shù),且每次生成每個實數(shù)都是等可能性的.若用該電腦連續(xù)生成3個實數(shù),則這3個實數(shù)都小于的概率為()A. B. C. D.12.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)與函數(shù),在公共點處有共同的切線,則實數(shù)的值為______.14.已知隨機變量服從正態(tài)分布,若,則_________.15.如圖是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設,,則的面積為________.16.已知實數(shù)滿足(為虛數(shù)單位),則的值為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,求不等式的解集;(2)若“,”為假命題,求的取值范圍.18.(12分)設的內角的對邊分別為,已知.(1)求;(2)若為銳角三角形,求的取值范圍.19.(12分)已知圓上有一動點,點的坐標為,四邊形為平行四邊形,線段的垂直平分線交于點.(Ⅰ)求點的軌跡的方程;(Ⅱ)過點作直線與曲線交于兩點,點的坐標為,直線與軸分別交于兩點,求證:線段的中點為定點,并求出面積的最大值.20.(12分)某調查機構對某校學生做了一個是否同意生“二孩”抽樣調查,該調查機構從該校隨機抽查了100名不同性別的學生,調查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”,現(xiàn)已得知100人中同意父母生“二孩”占60%,統(tǒng)計情況如下表:同意不同意合計男生a5女生40d合計100(1)求a,d的值,根據(jù)以上數(shù)據(jù),能否有97.5%的把握認為是否同意父母生“二孩”與性別有關?請說明理由;(2)將上述調查所得的頻率視為概率,現(xiàn)在從所有學生中,采用隨機抽樣的方法抽取4位學生進行長期跟蹤調查,記被抽取的4位學生中持“同意”態(tài)度的人數(shù)為X,求X的分布列及數(shù)學期望.附:0.150.1000.0500.0250.0102.0722.7063.8415.0246.63521.(12分)已知離心率為的橢圓經過點.(1)求橢圓的方程;(2)薦橢圓的右焦點為,過點的直線與橢圓分別交于,若直線、、的斜率成等差數(shù)列,請問的面積是否為定值?若是,求出此定值;若不是,請說明理由.22.(10分)一年之計在于春,一日之計在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的個坑進行播種,每個坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨立.對每一個坑而言,如果至少有兩粒種子發(fā)芽,則不需要進行補播種,否則要補播種.(1)當取何值時,有3個坑要補播種的概率最大?最大概率為多少?(2)當時,用表示要補播種的坑的個數(shù),求的分布列與數(shù)學期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)古典概型概率計算公式,計算出概率并求得數(shù)學期望,由此判斷出正確選項.【詳解】表示取出的為一個白球,所以.表示取出一個黑球,,所以.表示取出兩個球,其中一黑一白,,表示取出兩個球為黑球,,表示取出兩個球為白球,,所以.所以,.故選:C【點睛】本小題主要考查離散型隨機變量分布列和數(shù)學期望的計算,屬于中檔題.2、B【解析】

根據(jù)復數(shù)的除法運算法則和共軛復數(shù)的定義直接求解即可.【詳解】由,得,所以.故選:B【點睛】本題考查了復數(shù)的除法的運算法則,考查了復數(shù)的共軛復數(shù)的定義,屬于基礎題.3、B【解析】

根據(jù)題中給出的分段函數(shù),只要將問題轉化為求x≥10內的函數(shù)值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點睛】本題主要考查了分段函數(shù)中求函數(shù)的值,屬于基礎題.4、B【解析】

先判斷命題的真假,進而根據(jù)復合命題真假的真值表,即可得答案.【詳解】,,因為,,所以,所以,即命題p為真命題;畫出函數(shù)和圖象,知命題q為假命題,所以為真.故選:B.【點睛】本題考查真假命題的概念,以及真值表的應用,解題的關鍵是判斷出命題的真假,難度較易.5、B【解析】

在上分別取點,使得,可知為平行四邊形,從而可得到,即可得到答案.【詳解】如下圖,,在上分別取點,使得,則為平行四邊形,故,故答案為B.【點睛】本題考查了平面向量的線性運算,考查了學生邏輯推理能力,屬于基礎題.6、B【解析】

連接,,,,由正四棱柱的特征可知,再由平面的基本性質可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設,則,則,,,由余弦定理,得.故選:B【點睛】本題主要考查異面直線的定義及所成的角和平面的基本性質,還考查了推理論證和運算求解的能力,屬于中檔題.7、D【解析】

①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設的中點為,連接,則,,又,所以平面,所以,故①正確;因為,所以平面,故②正確;當平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故④正確.故選:D【點睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.8、C【解析】

兩復數(shù)相等,實部與虛部對應相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.【點睛】本題考查復數(shù)的概念,屬于基礎題.9、D【解析】

由特稱命題的否定是全稱命題可判斷選項A;可能相交,可判斷B選項;利用正態(tài)分布的性質可判斷選項C;或,利用集合間的包含關系可判斷選項D.【詳解】命題“,”的否定形式是“,”,故A錯誤;,,則可能相交,故B錯誤;若,則,所以,故,所以C錯誤;由,得或,故“”是“”的充分不必要條件,D正確.故選:D.【點睛】本題考查命題的真假判斷,涉及到特稱命題的否定、面面相關的命題、正態(tài)分布、充分條件與必要條件等,是一道容易題.10、A【解析】

依據(jù)無窮等比數(shù)列求和公式,先求出首項,再求出,利用無窮等比數(shù)列求和公式即可求出結果?!驹斀狻恳驗闊o窮等比數(shù)列的公比為2,則無窮等比數(shù)列的公比為。由有,,解得,所以,,故選A?!军c睛】本題主要考查無窮等比數(shù)列求和公式的應用。11、C【解析】

由幾何概型的概率計算,知每次生成一個實數(shù)小于1的概率為,結合獨立事件發(fā)生的概率計算即可.【詳解】∵每次生成一個實數(shù)小于1的概率為.∴這3個實數(shù)都小于1的概率為.故選:C.【點睛】本題考查獨立事件同時發(fā)生的概率,考查學生基本的計算能力,是一道容易題.12、A【解析】

由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點睛】本題主要考查了平面向量基本定理的應用,其中解答熟記平面向量的基本定理,化簡得到是解答的關鍵,著重考查了運算與求解能力,數(shù)基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

函數(shù)的定義域為,求出導函數(shù),利用曲線與曲線公共點為由于在公共點處有共同的切線,解得,,聯(lián)立解得的值.【詳解】解:函數(shù)的定義域為,,,設曲線與曲線公共點為,由于在公共點處有共同的切線,∴,解得,.由,可得.聯(lián)立,解得.故答案為:.【點睛】本題考查函數(shù)的導數(shù)的應用,切線方程的求法,考查轉化思想以及計算能力,是中檔題.14、0.4【解析】

因為隨機變量ζ服從正態(tài)分布,利用正態(tài)曲線的對稱性,即得解.【詳解】因為隨機變量ζ服從正態(tài)分布所以正態(tài)曲線關于對稱,所.【點睛】本題考查了正態(tài)分布曲線的對稱性在求概率中的應用,考查了學生概念理解,數(shù)形結合,數(shù)學運算的能力,屬于基礎題.15、【解析】

根據(jù)個全等的三角形,得到,設,求得,利用余弦定理求得,再利用三角形的面積公式,求得三角形的面積.【詳解】由于三角形是由個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,所以.在三角形中,.設,則.由余弦定理得,解得.所以三角形邊長為,面積為.故答案為:【點睛】本題考查了等邊三角形的面積計算公式、余弦定理、全等三角形的性質,考查了推理能力與計算能力,屬于中檔題.16、【解析】

由虛數(shù)單位的性質結合復數(shù)相等的條件列式求得,的值,則答案可求.【詳解】解:由,,,所以,得,..故答案為:.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查虛數(shù)單位的性質,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1))當時,將函數(shù)寫成分段函數(shù),即可求得不等式的解集.(2)根據(jù)原命題是假命題,這命題的否定為真命題,即“,”為真命題,只需滿足即可.【詳解】解:(1)當時,由,得.故不等式的解集為.(2)因為“,”為假命題,所以“,”為真命題,所以.因為,所以,則,所以,即,解得,即的取值范圍為.【點睛】本題考查絕對值不等式的解法,以及絕對值三角不等式,屬于基礎題.18、(1)(2)【解析】

(1)利用正弦定理化簡已知條件,由此求得的值,進而求得的大小.(2)利用正弦定理和兩角差的正弦公式,求得的表達式,進而求得的取值范圍.【詳解】(1)由題設知,,即,所以,即,又所以.(2)由題設知,,即,又為銳角三角形,所以,即所以,即,所以的取值范圍是.【點睛】本小題主要考查利用正弦定理解三角形,考查利用角的范圍,求邊的比值的取值范圍,屬于中檔題.19、(Ⅰ);(Ⅱ)4.【解析】

(Ⅰ)先畫出圖形,結合垂直平分線和平行四邊形性質可得為一定值,,故可確定點軌跡為橢圓(),進而求解;(Ⅱ)設直線方程為,點坐標分別為,聯(lián)立直線與橢圓方程得,,分別由點斜式求得直線KA的方程為,令得,同理得,由結合韋達定理即可求解,而,當重合交于點時,可求最值;【詳解】(Ⅰ),所以點的軌跡是一個橢圓,且長軸長,半焦距,所以,軌跡的方程為.(Ⅱ)當直線的斜率為0時,與曲線無交點.當直線的斜率不為0時,設過點的直線方程為,點坐標分別為.直線與橢圓方程聯(lián)立得消去,得.則,.直線KA的方程為.令得.同理可得.所以.所以的中點為.不妨設點在點的上方,則.【點睛】本題考查根據(jù)橢圓的定義求橢圓的方程,橢圓中的定點定值問題,屬于中檔題20、(1),有97.5%的把握認為是否同意父母生“二孩”與“性別”有關;(2)詳見解析.【解析】

(1)根據(jù)表格及同意父母生“二孩”占60%可求出,,根據(jù)公式計算結果即可確定有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(2)由題意可知X服從二項分布,利用公式計算概率及期望即可.【詳解】(1)因為100人中同意父母生“二孩”占60%,所以,文(2)由列聯(lián)表可得而所以有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(2)①由題知持“同意”態(tài)度的學生的頻率為,即從學生中任意抽取到一名持“同意”態(tài)度的學生的概率為.由于總體容量很大,故X服從二項分布,即從而X的分布列為X01234X的數(shù)學期望為【點睛】本題主要考查了相關性檢驗、二項分布,屬于中檔題.21、(1);(2)是,【解析】

(1)根據(jù)及可得,再將點代入橢圓的方程與聯(lián)立解出,即可求出橢圓的方程;(2)可設所在直線的方程為,,,,將直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論