版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省昆明市五華區(qū)2025屆高考數(shù)學二模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.年部分省市將實行“”的新高考模式,即語文、數(shù)學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B.C. D.2.復數(shù)(i是虛數(shù)單位)在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知函數(shù)(,,),將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的部分圖象如圖所示,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.2825.已知橢圓的左、右焦點分別為、,過的直線交橢圓于A,B兩點,交y軸于點M,若、M是線段AB的三等分點,則橢圓的離心率為()A. B. C. D.6.設,,則()A. B.C. D.7.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內切 B.相交 C.外切 D.相離8.若平面向量,滿足,則的最大值為()A. B. C. D.9.已知實數(shù)、滿足不等式組,則的最大值為()A. B. C. D.10.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.11.如圖,在中,,是上的一點,若,則實數(shù)的值為()A. B. C. D.12.下列判斷錯誤的是()A.若隨機變量服從正態(tài)分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機變量服從二項分布:,則D.是的充分不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若變量x,y滿足:,且滿足,則參數(shù)t的取值范圍為_______.14.已知向量滿足,且,則_________.15.某班有學生52人,現(xiàn)將所有學生隨機編號,用系統(tǒng)抽樣方法,抽取一個容量為4的樣本,已知5號、31號、44號學生在樣本中,則樣本中還有一個學生的編號是__________.16.已知數(shù)列的各項均為正數(shù),記為的前n項和,若,,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:(a>b>0)過點(0,),且滿足a+b=3.(1)求橢圓C的方程;(2)若斜率為的直線與橢圓C交于兩個不同點A,B,點M坐標為(2,1),設直線MA與MB的斜率分別為k1,k2,試問k1+k2是否為定值?并說明理由.18.(12分)已知,點分別為橢圓的左、右頂點,直線交于另一點為等腰直角三角形,且.(Ⅰ)求橢圓的方程;(Ⅱ)設過點的直線與橢圓交于兩點,總使得為銳角,求直線斜率的取值范圍.19.(12分)已知與有兩個不同的交點,其橫坐標分別為().(1)求實數(shù)的取值范圍;(2)求證:.20.(12分)如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點.證明:;設,點M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.21.(12分)已知,且的解集為.(1)求實數(shù),的值;(2)若的圖像與直線及圍成的四邊形的面積不小于14,求實數(shù)取值范圍.22.(10分)已知直線:與拋物線切于點,直線:過定點Q,且拋物線上的點到點Q的距離與其到準線距離之和的最小值為.(1)求拋物線的方程及點的坐標;(2)設直線與拋物線交于(異于點P)兩個不同的點A、B,直線PA,PB的斜率分別為,那么是否存在實數(shù),使得?若存在,求出的值;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.2、B【解析】
利用復數(shù)的四則運算以及幾何意義即可求解.【詳解】解:,則復數(shù)(i是虛數(shù)單位)在復平面內對應的點的坐標為:,位于第二象限.故選:B.【點睛】本題考查了復數(shù)的四則運算以及復數(shù)的幾何意義,屬于基礎題.3、B【解析】
先根據(jù)圖象求出函數(shù)的解析式,再由平移知識得到的解析式,然后分別找出和的等價條件,即可根據(jù)充分條件,必要條件的定義求出.【詳解】設,根據(jù)圖象可知,,再由,取,∴.將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,∴.,,令,則,顯然,∴是的必要不充分條件.故選:B.【點睛】本題主要考查利用圖象求正(余)弦型函數(shù)的解析式,三角函數(shù)的圖形變換,二倍角公式的應用,充分條件,必要條件的定義的應用,意在考查學生的數(shù)學運算能力和邏輯推理能力,屬于中檔題.4、B【解析】
將三視圖還原成幾何體,然后分別求出各個面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長交于點,其中,,,所以表面積.故選B項.【點睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題5、D【解析】
根據(jù)題意,求得的坐標,根據(jù)點在橢圓上,點的坐標滿足橢圓方程,即可求得結果.【詳解】由已知可知,點為中點,為中點,故可得,故可得;代入橢圓方程可得,解得,不妨取,故可得點的坐標為,則,易知點坐標,將點坐標代入橢圓方程得,所以離心率為,故選:D.【點睛】本題考查橢圓離心率的求解,難點在于根據(jù)題意求得點的坐標,屬中檔題.6、D【解析】
由不等式的性質及換底公式即可得解.【詳解】解:因為,,則,且,所以,,又,即,則,即,故選:D.【點睛】本題考查了不等式的性質及換底公式,屬基礎題.7、B【解析】化簡圓M:x2+(y-a)2=a又N(1,1),r8、C【解析】
可根據(jù)題意把要求的向量重新組合成已知向量的表達,利用向量數(shù)量積的性質,化簡為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C【點睛】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達是本題的關鍵點.本題屬中檔題.9、A【解析】
畫出不等式組所表示的平面區(qū)域,結合圖形確定目標函數(shù)的最優(yōu)解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區(qū)域,如圖所示,由目標函數(shù),化為直線,當直線過點A時,此時直線在y軸上的截距最大,目標函數(shù)取得最大值,又由,解得,所以目標函數(shù)的最大值為,故選A.【點睛】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關鍵,著重考查了數(shù)形結合思想,及推理與計算能力,屬于基礎題.10、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.11、B【解析】
變形為,由得,轉化在中,利用三點共線可得.【詳解】解:依題:,又三點共線,,解得.故選:.【點睛】本題考查平面向量基本定理及用向量共線定理求參數(shù).思路是(1)先選擇一組基底,并運用該基底將條件和結論表示成向量的形式,再通過向量的運算來解決.利用向量共線定理及向量相等的條件列方程(組)求參數(shù)的值.(2)直線的向量式參數(shù)方程:三點共線?(為平面內任一點,)12、D【解析】
根據(jù)正態(tài)分布、空間中點線面的位置關系、充分條件與必要條件的判斷、二項分布及不等式的性質等知識,依次對四個選項加以分析判斷,進而可求解.【詳解】對于選項,若隨機變量服從正態(tài)分布,根據(jù)正態(tài)分布曲線的對稱性,有,故選項正確,不符合題意;對于選項,已知直線平面,直線平面,則當時一定有,充分性成立,而當時,不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項正確,不符合題意;對于選項,若隨機變量服從二項分布:,則,故選項正確,不符合題意;對于選項,,僅當時有,當時,不成立,故充分性不成立;若,僅當時有,當時,不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項不正確,符合題意.故選:D【點睛】本題考查正態(tài)分布、空間中點線面的位置關系、充分條件與必要條件的判斷、二項分布及不等式的性質等知識,考查理解辨析能力與運算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)變量x,y滿足:,畫出可行域,由,解得直線過定點,直線繞定點旋轉與可行域有交點即可,再結合圖象利用斜率求解.【詳解】由變量x,y滿足:,畫出可行域如圖所示陰影部分,由,整理得,由,解得,所以直線過定點,由,解得,由,解得,要使,則與可行域有交點,當時,滿足條件,當時,直線得斜率應該不小于AC,而不大于AB,即或,解得,且,綜上:參數(shù)t的取值范圍為.故答案為:【點睛】本題主要考查線性規(guī)劃的應用,還考查了轉化運算求解的能力,屬于中檔題.14、【解析】
由數(shù)量積的運算律求得,再由數(shù)量積的定義可得結論.【詳解】由題意,∴,即,∴.故答案為:.【點睛】本題考查求向量的夾角,掌握數(shù)量積的定義與運算律是解題關鍵.15、18【解析】
根據(jù)系統(tǒng)抽樣的定義和方法,所抽取的4個個體的編號成等差數(shù)列,故可根據(jù)其中三個個體的編號求出另一個個體的編號.【詳解】解:根據(jù)系統(tǒng)抽樣的定義和方法,所抽取的4個個體的編號成等差數(shù)列,已知其中三個個體的編號為5,31,44,故還有一個抽取的個體的編號為18,故答案為:18【點睛】本題主要考查系統(tǒng)抽樣的定義和方法,屬于簡單題.16、127【解析】
已知條件化簡可化為,等式兩邊同時除以,則有,通過求解方程可解得,即證得數(shù)列為等比數(shù)列,根據(jù)已知即可解得所求.【詳解】由..故答案為:.【點睛】本題考查通過遞推公式證明數(shù)列為等比數(shù)列,考查了等比的求和公式,考查學生分析問題的能力,難度較易.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)k1+k2為定值0,見解析【解析】
(1)利用已知條件直接求解,得到橢圓的方程;(2)設直線在軸上的截距為,推出直線方程,然后將直線與橢圓聯(lián)立,設,利用韋達定理求出,然后化簡求解即可.【詳解】(1)由橢圓過點(0,),則,又a+b=3,所以,故橢圓的方程為;(2),證明如下:設直線在軸上的截距為,所以直線的方程為:,由得:,由得,設,則,所以,又,所以,故.【點睛】本題主要考查了橢圓的標準方程的求解,直線與橢圓的位置關系的綜合應用,考查了方程的思想,轉化與化歸的思想,考查了學生的運算求解能力.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由題意可知:由,求得點坐標,即可求得橢圓的方程;(Ⅱ)設直線,代入橢圓方程,由韋達定理,由,由為銳角,則,由向量數(shù)量積的坐標公式,即可求得直線斜率的取值范圍.【詳解】解:(Ⅰ)根據(jù)題意是等腰直角三角形,,設由得則代入橢圓方程得橢圓的方程為(Ⅱ)根據(jù)題意,直線的斜率存在,可設方程為設由得由直線與橢圓有兩個不同的交點則即得又為銳角則即②由①②得或故直線斜率可取值范圍是【點睛】本題考查橢圓的標準方程及簡單幾何性質,考查直線與橢圓的位置關系,考查向量數(shù)量積的坐標運算,韋達定理,考查計算能力,屬于中檔題.19、(1);(2)見解析【解析】
(1)利用導數(shù)研究的單調性,分析函數(shù)性質,數(shù)形結合,即得解;(2)構造函數(shù),可證得:,,分析直線,與從左到右交點的橫坐標,在,處的切線即得解.【詳解】(1)設函數(shù),,令,令故在單調遞減,在單調遞增,∴,∵時;;時.(2)①過點,的直線為,則令,,,.②過點,的直線為,則,在上單調遞增.③設直線,與從左到右交點的橫坐標依次為,,由圖知.④在,處的切線分別為,,同理可以證得,.記直線與兩切線和從左到右交點的橫坐標依次為,.【點睛】本題考查了函數(shù)與導數(shù)綜合,考查了學生數(shù)形結合,綜合分析,轉化劃歸,邏輯推理,數(shù)學運算的能力,屬于較難題.20、(1)見解析;(2)【解析】
(1)由平面平面的性質定理得平面,.在中,由勾股定理得,平面,即可得;(2)以為坐標原點建立空間直角坐標系,由空間向量法和異面直線與所成角的余弦值為,得點M的坐標,從而求出二面角的余弦值.【詳解】(1)平面平面,平面平面=,,所以.由面面垂直的性質定理得平面,,在中,,,由正弦定理可得:,,即,平面,.(2)以為坐標原點建立如圖所示的空間直角坐標系,則,,,設,則,,得,,而,設平面的法向量為,由可得:,令,則,取平面的法向量,則,故二面角的余弦值為.【點睛】本題考查了線線垂直的證明,考查二面角的余弦值的求法,解題時要注意空間思維能力的培養(yǎng)和向量法的合理運用,屬于中檔題.21、(1),;(2)【解析】
(1)解絕對值不等式得,根據(jù)不等式的解集為列出方程組,解出即可;(2)求出的圖像與直線及交點的坐標,通過分割法將四邊形的面積分為兩個三角形,列出不等式,解不等式即可.【詳解】(1)由得:,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度寵物養(yǎng)護服務中介擔保服務條款3篇
- 2024-2030年中國垃圾發(fā)電行業(yè)發(fā)展困境與十三五投資建議報告
- 2024年物業(yè)管理合作協(xié)議模板6篇
- 2024年機器操作安全合同3篇
- 滿洲里俄語職業(yè)學院《進出口業(yè)務實操二》2023-2024學年第一學期期末試卷
- 漯河醫(yī)學高等專科學?!毒频旯芾硇畔⒒浖嶒灐?023-2024學年第一學期期末試卷
- 2024套房智能家居系統(tǒng)設計與安裝服務合同
- 2025微博微信廣告發(fā)布合同書
- 單位人力資源管理制度品讀選集
- 國家開放大學《公文寫作》期末考試輔導參考答案
- 2024年人社局社保中心事業(yè)單位考試管理單位遴選及參考答案(典型題)
- 中建工業(yè)廠房電氣工程專項施工方案
- 2024年行政執(zhí)法人員執(zhí)法資格知識考試題庫(附含答案)
- 大學英語I(桂林電子科技大學)知到智慧樹章節(jié)答案
- 2024年爐外精煉工(高級)職業(yè)技能鑒定考試題庫(含答案)
- 子宮腺肌瘤護理個案
- “雙碳”碳達峰碳中和完全解讀
- 《中華人民共和國文物保護法》知識專題培訓
- 血液透析服務協(xié)議
- 財務報表練習題及答案
評論
0/150
提交評論