2025屆金陵中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第1頁
2025屆金陵中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第2頁
2025屆金陵中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第3頁
2025屆金陵中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第4頁
2025屆金陵中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆金陵中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)在的圖象大致為()A. B.C. D.2.波羅尼斯(古希臘數(shù)學(xué)家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)k(k>0,且k≠1)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.現(xiàn)有橢圓=1(a>b>0),A,B為橢圓的長軸端點(diǎn),C,D為橢圓的短軸端點(diǎn),動點(diǎn)M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.3.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.4.已知,,,則()A. B. C. D.5.已知函數(shù),,若對任意的,存在實(shí)數(shù)滿足,使得,則的最大值是()A.3 B.2 C.4 D.56.在直角中,,,,若,則()A. B. C. D.7.已知定義在上的函數(shù),若函數(shù)為偶函數(shù),且對任意,,都有,若,則實(shí)數(shù)的取值范圍是()A. B. C. D.8.集合的真子集的個(gè)數(shù)為()A.7 B.8 C.31 D.329.在正方體中,,分別為,的中點(diǎn),則異面直線,所成角的余弦值為()A. B. C. D.10.拋物線y2=ax(a>0)的準(zhǔn)線與雙曲線C:x28A.8 B.6 C.4 D.211.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個(gè)很搶眼,他們就是院??蒲蟹疥?他們是由軍事科學(xué)院、國防大學(xué)、國防科技大學(xué)聯(lián)合組建.若已知甲、乙、丙三人來自上述三所學(xué)校,學(xué)歷分別有學(xué)士、碩士、博士學(xué)位.現(xiàn)知道:①甲不是軍事科學(xué)院的;②來自軍事科學(xué)院的不是博士;③乙不是軍事科學(xué)院的;④乙不是博士學(xué)位;⑤國防科技大學(xué)的是研究生.則丙是來自哪個(gè)院校的,學(xué)位是什么()A.國防大學(xué),研究生 B.國防大學(xué),博士C.軍事科學(xué)院,學(xué)士 D.國防科技大學(xué),研究生12.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數(shù),那么a+b的值是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),對于任意都有,則的值為______________.14.已知數(shù)列滿足,則________.15.已知雙曲線的左、右焦點(diǎn)分別為為雙曲線上任一點(diǎn),且的最小值為,則該雙曲線的離心率是__________.16.的展開式中的系數(shù)為____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為貫徹十九大報(bào)告中“要提供更多優(yōu)質(zhì)生態(tài)產(chǎn)品以滿足人民日益增長的優(yōu)美生態(tài)環(huán)境需要”的要求,某生物小組通過抽樣檢測植物高度的方法來監(jiān)測培育的某種植物的生長情況.現(xiàn)分別從、、三塊試驗(yàn)田中各隨機(jī)抽取株植物測量高度,數(shù)據(jù)如下表(單位:厘米):組組組假設(shè)所有植株的生長情況相互獨(dú)立.從、、三組各隨機(jī)選株,組選出的植株記為甲,組選出的植株記為乙,組選出的植株記為丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有數(shù)據(jù)的平均數(shù)記為.從、、三塊試驗(yàn)田中分別再隨機(jī)抽取株該種植物,它們的高度依次是、、(單位:厘米).這個(gè)新數(shù)據(jù)與表格中的所有數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,試比較和的大小.(結(jié)論不要求證明)18.(12分)聯(lián)合國糧農(nóng)組織對某地區(qū)最近10年的糧食需求量部分統(tǒng)計(jì)數(shù)據(jù)如下表:年份20102012201420162018需求量(萬噸)236246257276286(1)由所給數(shù)據(jù)可知,年需求量與年份之間具有線性相關(guān)關(guān)系,我們以“年份—2014”為橫坐標(biāo),“需求量”為縱坐標(biāo),請完成如下數(shù)據(jù)處理表格:年份—20140需求量—2570(2)根據(jù)回歸直線方程分析,2020年聯(lián)合國糧農(nóng)組織計(jì)劃向該地區(qū)投放糧食300萬噸,問是否能夠滿足該地區(qū)的糧食需求?參考公式:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.19.(12分)已知均為正實(shí)數(shù),函數(shù)的最小值為.證明:(1);(2).20.(12分)在一次電視節(jié)目的答題游戲中,題型為選擇題,只有“A”和“B”兩種結(jié)果,其中某選手選擇正確的概率為p,選擇錯(cuò)誤的概率為q,若選擇正確則加1分,選擇錯(cuò)誤則減1分,現(xiàn)記“該選手答完n道題后總得分為”.(1)當(dāng)時(shí),記,求的分布列及數(shù)學(xué)期望;(2)當(dāng),時(shí),求且的概率.21.(12分)已知函數(shù)有兩個(gè)零點(diǎn).(1)求的取值范圍;(2)是否存在實(shí)數(shù),對于符合題意的任意,當(dāng)時(shí)均有?若存在,求出所有的值;若不存在,請說明理由.22.(10分)已知變換將平面上的點(diǎn),分別變換為點(diǎn),.設(shè)變換對應(yīng)的矩陣為.(1)求矩陣;(2)求矩陣的特征值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

先根據(jù)函數(shù)奇偶性排除B,再根據(jù)函數(shù)極值排除A;結(jié)合特殊值即可排除D,即可得解.【詳解】函數(shù),則,所以為奇函數(shù),排除B選項(xiàng);當(dāng)時(shí),,所以排除A選項(xiàng);當(dāng)時(shí),,排除D選項(xiàng);綜上可知,C為正確選項(xiàng),故選:C.【點(diǎn)睛】本題考查根據(jù)函數(shù)解析式判斷函數(shù)圖像,注意奇偶性、單調(diào)性、極值與特殊值的使用,屬于基礎(chǔ)題.2、D【解析】

求得定點(diǎn)M的軌跡方程可得,解得a,b即可.【詳解】設(shè)A(-a,0),B(a,0),M(x,y).∵動點(diǎn)M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點(diǎn)睛】本題考查了橢圓離心率,動點(diǎn)軌跡,屬于中檔題.3、C【解析】

根據(jù)總有恒成立可構(gòu)造函數(shù),求導(dǎo)后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡可得,求得,再換元求導(dǎo)分析最大值即可.【詳解】由題,總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增,無最大值.若,則當(dāng)時(shí),,在上單調(diào)遞減,當(dāng)時(shí),,在上單調(diào)遞增.故在處取得最大值.故,化簡得.故,令,可令,故,當(dāng)時(shí),,在遞減;當(dāng)時(shí),,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點(diǎn)睛】本題主要考查了根據(jù)導(dǎo)數(shù)求解函數(shù)的最值問題,需要根據(jù)題意分析導(dǎo)數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進(jìn)而求導(dǎo)構(gòu)造函數(shù)求解的最大值.屬于難題.4、B【解析】

利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,將數(shù)據(jù)和做對比,即可判斷.【詳解】由于,,故.故選:B.【點(diǎn)睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,屬基礎(chǔ)題.5、A【解析】

根據(jù)條件將問題轉(zhuǎn)化為,對于恒成立,然后構(gòu)造函數(shù),然后求出的范圍,進(jìn)一步得到的最大值.【詳解】,,對任意的,存在實(shí)數(shù)滿足,使得,易得,即恒成立,,對于恒成立,設(shè),則,令,在恒成立,,故存在,使得,即,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.,將代入得:,,且,故選:A【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,零點(diǎn)存在定理和不等式恒成立問題,考查了轉(zhuǎn)化思想,屬于難題.6、C【解析】

在直角三角形ABC中,求得,再由向量的加減運(yùn)算,運(yùn)用平面向量基本定理,結(jié)合向量數(shù)量積的定義和性質(zhì):向量的平方即為模的平方,化簡計(jì)算即可得到所求值.【詳解】在直角中,,,,,

,

若,則故選C.【點(diǎn)睛】本題考查向量的加減運(yùn)算和數(shù)量積的定義和性質(zhì),主要是向量的平方即為模的平方,考查運(yùn)算能力,屬于中檔題.7、A【解析】

根據(jù)題意,分析可得函數(shù)的圖象關(guān)于對稱且在上為減函數(shù),則不等式等價(jià)于,解得的取值范圍,即可得答案.【詳解】解:因?yàn)楹瘮?shù)為偶函數(shù),所以函數(shù)的圖象關(guān)于對稱,因?yàn)閷θ我?,,都有,所以函?shù)在上為減函數(shù),則,解得:.即實(shí)數(shù)的取值范圍是.故選:A.【點(diǎn)睛】本題考查函數(shù)的對稱性與單調(diào)性的綜合應(yīng)用,涉及不等式的解法,屬于綜合題.8、A【解析】

計(jì)算,再計(jì)算真子集個(gè)數(shù)得到答案.【詳解】,故真子集個(gè)數(shù)為:.故選:.【點(diǎn)睛】本題考查了集合的真子集個(gè)數(shù),意在考查學(xué)生的計(jì)算能力.9、D【解析】

連接,,因?yàn)?,所以為異面直線與所成的角(或補(bǔ)角),不妨設(shè)正方體的棱長為2,取的中點(diǎn)為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【詳解】連接,,因?yàn)?,所以為異面直線與所成的角(或補(bǔ)角),不妨設(shè)正方體的棱長為2,則,,在等腰中,取的中點(diǎn)為,連接,則,,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【點(diǎn)睛】本題考查空間異面直線的夾角余弦值,利用了正方體的性質(zhì)和二倍角公式,還考查空間思維和計(jì)算能力.10、A【解析】

求得拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,解得兩交點(diǎn),由三角形的面積公式,計(jì)算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準(zhǔn)線為x=-a4,雙曲線C:x28-y24【點(diǎn)睛】本題考查三角形的面積的求法,注意運(yùn)用拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,考查運(yùn)算能力,屬于基礎(chǔ)題.11、C【解析】

根據(jù)①③可判斷丙的院校;由②和⑤可判斷丙的學(xué)位.【詳解】由題意①甲不是軍事科學(xué)院的,③乙不是軍事科學(xué)院的;則丙來自軍事科學(xué)院;由②來自軍事科學(xué)院的不是博士,則丙不是博士;由⑤國防科技大學(xué)的是研究生,可知丙不是研究生,故丙為學(xué)士.綜上可知,丙來自軍事科學(xué)院,學(xué)位是學(xué)士.故選:C.【點(diǎn)睛】本題考查了合情推理的簡單應(yīng)用,由條件的相互牽制判斷符合要求的情況,屬于基礎(chǔ)題.12、B【解析】

依照偶函數(shù)的定義,對定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x),且定義域關(guān)于原點(diǎn)對稱,a﹣1=﹣2a,即可得解.【詳解】根據(jù)偶函數(shù)的定義域關(guān)于原點(diǎn)對稱,且f(x)是定義在[a–1,2a]上的偶函數(shù),得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點(diǎn)睛】本題考查偶函數(shù)的定義,對定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關(guān)于原點(diǎn)對稱,定義域區(qū)間兩個(gè)端點(diǎn)互為相反數(shù).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由條件得到函數(shù)的對稱性,從而得到結(jié)果【詳解】∵f=f,∴x=是函數(shù)f(x)=2sin(ωx+φ)的一條對稱軸.∴f=±2.【點(diǎn)睛】本題考查了正弦型三角函數(shù)的對稱性,注意對稱軸必過最高點(diǎn)或最低點(diǎn),屬于基礎(chǔ)題.14、【解析】

項(xiàng)和轉(zhuǎn)化可得,討論是否滿足,分段表示即得解【詳解】當(dāng)時(shí),由已知,可得,∵,①故,②由①-②得,∴.顯然當(dāng)時(shí)不滿足上式,∴故答案為:【點(diǎn)睛】本題考查了利用求,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算,分類討論的能力,屬于中檔題.15、【解析】

根據(jù)雙曲線方程,設(shè)及,將代入雙曲線方程并化簡可得,由題意的最小值為,結(jié)合平面向量數(shù)量積的坐標(biāo)運(yùn)算化簡,即可求得的值,進(jìn)而求得離心率即可.【詳解】設(shè)點(diǎn),,則,即,∵,,,當(dāng)時(shí),等號成立,∴,∴,∴.故答案為:.【點(diǎn)睛】本題考查了雙曲線與向量的綜合應(yīng)用,由平面向量數(shù)量積的最值求離心率,屬于中檔題.16、28【解析】

將已知式轉(zhuǎn)化為,則的展開式中的系數(shù)中的系數(shù),根據(jù)二項(xiàng)式展開式可求得其值.【詳解】,所以的展開式中的系數(shù)就是中的系數(shù),而中的系數(shù)為,展開式中的系數(shù)為故答案為:28.【點(diǎn)睛】本題考查二項(xiàng)式展開式中的某特定項(xiàng)的系數(shù),關(guān)鍵在于將原表達(dá)式化簡將三項(xiàng)的冪的形式轉(zhuǎn)化為可求的二項(xiàng)式的形式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】

設(shè)事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、,可得出.(1)設(shè)事件為“丙的高度小于厘米”,可得,且、互斥,利用互斥事件的概率公式可求得結(jié)果;(2)設(shè)事件為“甲的高度大于乙的高度”,列舉出符合題意的基本事件,利用互斥事件的概率加法公式可求得所求事件的概率;(3)根據(jù)題意直接判斷和的大小即可.【詳解】設(shè)事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、.由題意可知,、、、.(1)設(shè)事件為“丙的高度小于厘米”,由題意知,又與互斥,所以事件的概率;(2)設(shè)事件為“甲的高度大于乙的高度”.由題意知.所以事件的概率;(3).【點(diǎn)睛】本題考查概率的求法,考查互斥事件加法公式、相互獨(dú)立事件概率乘法公式等基礎(chǔ)知識,考查運(yùn)算求解能力,是中等題.18、(1)見解析;(2)能夠滿足.【解析】

(1)根據(jù)表中數(shù)據(jù),結(jié)合以“年份—2014”為橫坐標(biāo),“需求量”為縱坐標(biāo)的要求即可完成表格;(2)根據(jù)表中及所給公式可求得線性回歸方程,由線性回歸方程預(yù)測2020年的糧食需求量,即可作出判斷.【詳解】(1)由所給數(shù)據(jù)和已知條件,對數(shù)據(jù)處理表格如下:年份—2014024需求量—25701929(2)由題意可知,變量與之間具有線性相關(guān)關(guān)系,由(1)中表格可得,,,,.由上述計(jì)算結(jié)果可知,所求回歸直線方程為,利用回歸直線方程,可預(yù)測2020年的糧食需求量為:(萬噸),因?yàn)?,故能夠滿足該地區(qū)的糧食需求.【點(diǎn)睛】本題考查了線性回歸直線的求法及預(yù)測應(yīng)用,屬于基礎(chǔ)題.19、(1)證明見解析(2)證明見解析【解析】

(1)運(yùn)用絕對值不等式的性質(zhì),注意等號成立的條件,即可求得最小值,再運(yùn)用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到結(jié)論,注意等號成立的條件.【詳解】(1)由題意,則函數(shù),又函數(shù)的最小值為,即,由柯西不等式得,當(dāng)且僅當(dāng)時(shí)取“=”.故.(2)由題意,利用基本不等式可得,,,(以上三式當(dāng)且僅當(dāng)時(shí)同時(shí)取“=”)由(1)知,,所以,將以上三式相加得即.【點(diǎn)睛】本題主要考查絕對值不等式、柯西不等式等基礎(chǔ)知識,考查運(yùn)算能力,屬于中檔題.20、(1)見解析,0(2)【解析】

(1)即該選手答完3道題后總得分,可能出現(xiàn)的情況為3道題都答對,答對2道答錯(cuò)1道,答對1道答錯(cuò)2道,3道題都答錯(cuò),進(jìn)而求解即可;(2)當(dāng)時(shí),即答完8題后,正確的題數(shù)為5題,錯(cuò)誤的題數(shù)是3題,又,則第一題答對,第二題第三題至少有一道答對,進(jìn)而求解.【詳解】解:(1)的取值可能為,,1,3,又因?yàn)?故,,,,所以的分布列為:13所以(2)當(dāng)時(shí),即答完8題后,正確的題數(shù)為5題,錯(cuò)誤的題數(shù)是3題,又已知,第一題答對,若第二題回答正

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論