版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省廣安市廣安中學(xué)2025屆高考適應(yīng)性考試數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),是兩條不同的直線,,是兩個(gè)不同的平面,給出下列四個(gè)命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個(gè)數(shù)為()A. B. C. D.2.中國(guó)古代用算籌來(lái)進(jìn)行記數(shù),算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個(gè)多位數(shù)時(shí),像阿拉伯記數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,其中個(gè)位、百位、方位……用縱式表示,十位、千位、十萬(wàn)位……用橫式表示,則56846可用算籌表示為()A. B. C. D.3.如圖,在底面邊長(zhǎng)為1,高為2的正四棱柱中,點(diǎn)是平面內(nèi)一點(diǎn),則三棱錐的正視圖與側(cè)視圖的面積之和為()A.2 B.3 C.4 D.54.已知拋物線上一點(diǎn)到焦點(diǎn)的距離為,分別為拋物線與圓上的動(dòng)點(diǎn),則的最小值為()A. B. C. D.5.已知定義在上的奇函數(shù)滿足:(其中),且在區(qū)間上是減函數(shù),令,,,則,,的大小關(guān)系(用不等號(hào)連接)為()A. B.C. D.6.已知數(shù)列對(duì)任意的有成立,若,則等于()A. B. C. D.7.已知分別為雙曲線的左、右焦點(diǎn),過(guò)的直線與雙曲線的左、右兩支分別交于兩點(diǎn),若,則雙曲線的離心率為()A. B.4 C.2 D.8.設(shè)集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}9.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向右平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向左平移個(gè)單位10.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗線畫出的是某多面體的三視圖,則該幾何體的各個(gè)面中最大面的面積為()A. B. C. D.11.已知函數(shù),若函數(shù)的所有零點(diǎn)依次記為,且,則()A. B. C. D.12.設(shè),,,則、、的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若的最小值為,則實(shí)數(shù)的取值范圍是_________14.在中,內(nèi)角所對(duì)的邊分別是.若,,則__,面積的最大值為_(kāi)__.15.某種賭博每局的規(guī)則是:賭客先在標(biāo)記有1,2,3,4,5的卡片中隨機(jī)摸取一張,將卡片上的數(shù)字作為其賭金;隨后放回該卡片,再隨機(jī)摸取兩張,將這兩張卡片上數(shù)字之差的絕對(duì)值的1.4倍作為其獎(jiǎng)金.若隨機(jī)變量ξ1和ξ2分別表示賭客在一局賭博中的賭金和獎(jiǎng)金,則D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.16.設(shè)全集,集合,,則集合______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)有兩個(gè)極值點(diǎn),.(1)求實(shí)數(shù)的取值范圍;(2)證明:.18.(12分)某商店舉行促銷反饋活動(dòng),顧客購(gòu)物每滿200元,有一次抽獎(jiǎng)機(jī)會(huì)(即滿200元可以抽獎(jiǎng)一次,滿400元可以抽獎(jiǎng)兩次,依次類推).抽獎(jiǎng)的規(guī)則如下:在一個(gè)不透明口袋中裝有編號(hào)分別為1,2,3,4,5的5個(gè)完全相同的小球,顧客每次從口袋中摸出一個(gè)小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球編號(hào)一次比一次大(如1,2,5),則獲得一等獎(jiǎng),獎(jiǎng)金40元;若摸得的小球編號(hào)一次比一次小(如5,3,1),則獲得二等獎(jiǎng),獎(jiǎng)金20元;其余情況獲得三等獎(jiǎng),獎(jiǎng)金10元.(1)某人抽獎(jiǎng)一次,求其獲獎(jiǎng)金額X的概率分布和數(shù)學(xué)期望;(2)趙四購(gòu)物恰好滿600元,假設(shè)他不放棄每次抽獎(jiǎng)機(jī)會(huì),求他獲得的獎(jiǎng)金恰好為60元的概率.19.(12分)已知橢圓的長(zhǎng)軸長(zhǎng)為,離心率(1)求橢圓的方程;(2)設(shè)分別為橢圓與軸正半軸和軸正半軸的交點(diǎn),是橢圓上在第一象限的一點(diǎn),直線與軸交于點(diǎn),直線與軸交于點(diǎn),問(wèn)與面積之差是否為定值?說(shuō)明理由.20.(12分)在四棱柱中,底面為正方形,,平面.(1)證明:平面;(2)若,求二面角的余弦值.21.(12分)已知直線的參數(shù)方程:(為參數(shù))和圓的極坐標(biāo)方程:(1)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)已知點(diǎn),直線與圓相交于、兩點(diǎn),求的值.22.(10分)在銳角中,分別是角的對(duì)邊,,,且.(1)求角的大小;(2)求函數(shù)的值域.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
利用線線、線面、面面相應(yīng)的判定與性質(zhì)來(lái)解決.【詳解】如果兩條平行線中一條垂直于這個(gè)平面,那么另一條也垂直于這個(gè)平面知①正確;當(dāng)直線平行于平面與平面的交線時(shí)也有,,故②錯(cuò)誤;若,則垂直平面內(nèi)以及與平面平行的所有直線,故③正確;若,則存在直線且,因?yàn)?,所以,從而,故④正確.故選:C.【點(diǎn)睛】本題考查空間中線線、線面、面面的位置關(guān)系,里面涉及到了相應(yīng)的判定定理以及性質(zhì)定理,是一道基礎(chǔ)題.2、B【解析】
根據(jù)題意表示出各位上的數(shù)字所對(duì)應(yīng)的算籌即可得答案.【詳解】解:根據(jù)題意可得,各個(gè)數(shù)碼的籌式需要縱橫相間,個(gè)位,百位,萬(wàn)位用縱式表示;十位,千位,十萬(wàn)位用橫式表示,用算籌表示應(yīng)為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對(duì)應(yīng)算籌表示為中的.故選:.【點(diǎn)睛】本題主要考查學(xué)生的合情推理與演繹推理,屬于基礎(chǔ)題.3、A【解析】
根據(jù)幾何體分析正視圖和側(cè)視圖的形狀,結(jié)合題干中的數(shù)據(jù)可計(jì)算出結(jié)果.【詳解】由三視圖的性質(zhì)和定義知,三棱錐的正視圖與側(cè)視圖都是底邊長(zhǎng)為高為的三角形,其面積都是,正視圖與側(cè)視圖的面積之和為,故選:A.【點(diǎn)睛】本題考查幾何體正視圖和側(cè)視圖的面積和,解答的關(guān)鍵就是分析出正視圖和側(cè)視圖的形狀,考查空間想象能力與計(jì)算能力,屬于基礎(chǔ)題.4、D【解析】
利用拋物線的定義,求得p的值,由利用兩點(diǎn)間距離公式求得,根據(jù)二次函數(shù)的性質(zhì),求得,由取得最小值為,求得結(jié)果.【詳解】由拋物線焦點(diǎn)在軸上,準(zhǔn)線方程,則點(diǎn)到焦點(diǎn)的距離為,則,所以拋物線方程:,設(shè),圓,圓心為,半徑為1,則,當(dāng)時(shí),取得最小值,最小值為,故選D.【點(diǎn)睛】該題考查的是有關(guān)距離的最小值問(wèn)題,涉及到的知識(shí)點(diǎn)有拋物線的定義,點(diǎn)到圓上的點(diǎn)的距離的最小值為其到圓心的距離減半徑,二次函數(shù)的最小值,屬于中檔題目.5、A【解析】因?yàn)?,所以,即周期為4,因?yàn)闉槠婧瘮?shù),所以可作一個(gè)周期[-2e,2e]示意圖,如圖在(0,1)單調(diào)遞增,因?yàn)?,因此,選A.點(diǎn)睛:函數(shù)對(duì)稱性代數(shù)表示(1)函數(shù)為奇函數(shù),函數(shù)為偶函數(shù)(定義域關(guān)于原點(diǎn)對(duì)稱);(2)函數(shù)關(guān)于點(diǎn)對(duì)稱,函數(shù)關(guān)于直線對(duì)稱,(3)函數(shù)周期為T,則6、B【解析】
觀察已知條件,對(duì)進(jìn)行化簡(jiǎn),運(yùn)用累加法和裂項(xiàng)法求出結(jié)果.【詳解】已知,則,所以有,,,,兩邊同時(shí)相加得,又因?yàn)椋?故選:【點(diǎn)睛】本題考查了求數(shù)列某一項(xiàng)的值,運(yùn)用了累加法和裂項(xiàng)法,遇到形如時(shí)就可以采用裂項(xiàng)法進(jìn)行求和,需要掌握數(shù)列中的方法,并能熟練運(yùn)用對(duì)應(yīng)方法求解.7、A【解析】
由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【詳解】.又,可令,則.設(shè),得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是由向量數(shù)量積為0得出垂直關(guān)系,利用雙曲線的定義把雙曲線上的點(diǎn)到焦點(diǎn)的距離都用表示出來(lái),從而再由勾股定理建立的關(guān)系.8、C【解析】
先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.【點(diǎn)睛】本題主要考查集合的交集運(yùn)算,屬于基礎(chǔ)題.9、D【解析】
直接根據(jù)三角函數(shù)的圖象平移規(guī)則得出正確的結(jié)論即可;【詳解】解:函數(shù),要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個(gè)單位.故選:D.【點(diǎn)睛】本題考查三角函數(shù)圖象平移的應(yīng)用問(wèn)題,屬于基礎(chǔ)題.10、B【解析】
根據(jù)三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據(jù)幾何體的各面面積可得最大面的面積.【詳解】解:分析題意可知,如下圖所示,該幾何體為一個(gè)正方體中的三棱錐,最大面的表面邊長(zhǎng)為的等邊三角形,故其面積為,故選B.【點(diǎn)睛】本題考查了幾何體的三視圖問(wèn)題,解題的關(guān)鍵是要能由三視圖解析出原幾何體,從而解決問(wèn)題.11、C【解析】
令,求出在的對(duì)稱軸,由三角函數(shù)的對(duì)稱性可得,將式子相加并整理即可求得的值.【詳解】令,得,即對(duì)稱軸為.函數(shù)周期,令,可得.則函數(shù)在上有8條對(duì)稱軸.根據(jù)正弦函數(shù)的性質(zhì)可知,將以上各式相加得:故選:C.【點(diǎn)睛】本題考查了三角函數(shù)的對(duì)稱性,考查了三角函數(shù)的周期性,考查了等差數(shù)列求和.本題的難點(diǎn)是將所求的式子拆分為的形式.12、D【解析】
因?yàn)?,,所以且在上單調(diào)遞減,且所以,所以,又因?yàn)椋?,所以,所?故選:D.【點(diǎn)睛】本題考查利用指對(duì)數(shù)函數(shù)的單調(diào)性比較指對(duì)數(shù)的大小,難度一般.除了可以直接利用單調(diào)性比較大小,還可以根據(jù)中間值“”比較大小.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
,可得在時(shí),最小值為,時(shí),要使得最小值為,則對(duì)稱軸在1的右邊,且,求解出即滿足最小值為.【詳解】當(dāng),,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.當(dāng)時(shí),為二次函數(shù),要想在處取最小,則對(duì)稱軸要滿足并且,即,解得.【點(diǎn)睛】本題考查分段函數(shù)的最值問(wèn)題,對(duì)每段函數(shù)先進(jìn)行分類討論,找到每段的最小值,然后再對(duì)兩段函數(shù)的最小值進(jìn)行比較,得到結(jié)果,題目較綜合,屬于中檔題.14、1【解析】
由正弦定理,結(jié)合,,可求出;由三角形面積公式以及角A的范圍,即可求出面積的最大值.【詳解】因?yàn)椋杂烧叶ɡ砜傻?,所?所以,當(dāng),即時(shí),三角形面積最大.故答案為(1).1(2).【點(diǎn)睛】本題主要考查解三角形的問(wèn)題,熟記正弦定理以及三角形面積公式即可求解,屬于基礎(chǔ)題型.15、20.2【解析】
分別求出隨機(jī)變量ξ1和ξ2的分布列,根據(jù)期望和方差公式計(jì)算得解.【詳解】設(shè)a,b∈{1,2,1,4,5},則p(ξ1=a),其ξ1分布列為:ξ112145PE(ξ1)(1+2+1+4+5)=1.D(ξ1)[(1﹣1)2+(2﹣1)2+(1﹣1)2+(4﹣1)2+(5﹣1)2]=2.ξ2=1.4|a﹣b|的可能取值分別為:1.4,2.3,4.2,5.6,P(ξ2=1.4),P(ξ2=2.3),P(ξ2=4.2),P(ξ2=5.6),可得分布列.ξ21.42.34.25.6PE(ξ2)=1.42.34.25.62.3.∴E(ξ1)﹣E(ξ2)=0.2.故答案為:2,0.2.【點(diǎn)睛】此題考查隨機(jī)變量及其分布,關(guān)鍵在于準(zhǔn)確求出隨機(jī)變量取值的概率,根據(jù)公式準(zhǔn)確計(jì)算期望和方差.16、【解析】
分別解得集合A與集合B的補(bǔ)集,再由集合交集的運(yùn)算法則計(jì)算求得答案.【詳解】由題可知,集合A中集合B的補(bǔ)集,則故答案為:【點(diǎn)睛】本題考查集合的交集與補(bǔ)集運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析【解析】
(1)先求得導(dǎo)函數(shù),根據(jù)兩個(gè)極值點(diǎn)可知有兩個(gè)不等實(shí)根,構(gòu)造函數(shù),求得;討論和兩種情況,即可確定零點(diǎn)的情況,即可由零點(diǎn)的情況確定的取值范圍;(2)根據(jù)極值點(diǎn)定義可知,,代入不等式化簡(jiǎn)變形后可知只需證明;構(gòu)造函數(shù),并求得,進(jìn)而判斷的單調(diào)區(qū)間,由題意可知,并設(shè),構(gòu)造函數(shù),并求得,即可判斷在內(nèi)的單調(diào)性和最值,進(jìn)而可得,即可由函數(shù)性質(zhì)得,進(jìn)而由單調(diào)性證明,即證明,從而證明原不等式成立.【詳解】(1)函數(shù)則,因?yàn)榇嬖趦蓚€(gè)極值點(diǎn),,所以有兩個(gè)不等實(shí)根.設(shè),所以.①當(dāng)時(shí),,所以在上單調(diào)遞增,至多有一個(gè)零點(diǎn),不符合題意.②當(dāng)時(shí),令得,0減極小值增所以,即.又因?yàn)椋?,所以在區(qū)間和上各有一個(gè)零點(diǎn),符合題意,綜上,實(shí)數(shù)的取值范圍為.(2)證明:由題意知,,所以,.要證明,只需證明,只需證明.因?yàn)椋?,所?設(shè),則,所以在上是增函數(shù),在上是減函數(shù).因?yàn)椋环猎O(shè),設(shè),,則,當(dāng)時(shí),,,所以,所以在上是增函數(shù),所以,所以,即.因?yàn)?,所以,所?因?yàn)?,,且在上是減函數(shù),所以,即,所以原命題成立,得證.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn),由導(dǎo)數(shù)證明不等式,構(gòu)造函數(shù)法的綜合應(yīng)用,極值點(diǎn)偏移證明不等式成立的應(yīng)用,是高考的常考點(diǎn)和熱點(diǎn),屬于難題.18、(1)分布見(jiàn)解析,期望為;(2).【解析】
(1)先明確X的可能取值,分別求解其概率,然后寫出分布列,利用期望公式可求期望;(2)獲得的獎(jiǎng)金恰好為60元,可能是三次二等獎(jiǎng),也可能是一次一等獎(jiǎng),兩次三等獎(jiǎng),然后分別求解概率即可.【詳解】(1)由題意知,隨機(jī)變量X的可能取值為10,20,40且,,所以,即隨機(jī)變量X的概率分布為X102040P所以隨機(jī)變量X的數(shù)學(xué)期望.(2)由題意知,趙四有三次抽獎(jiǎng)機(jī)會(huì),設(shè)恰好獲得60元為事件A,因?yàn)?0=20×3=40+10+10,所以.【點(diǎn)睛】本題主要考查隨機(jī)變量的分布列及數(shù)學(xué)期望,明確隨機(jī)變量的所有取值是求解的第一步,再求解對(duì)應(yīng)的概率,側(cè)重考查數(shù)學(xué)建模的核心素養(yǎng).19、(1)(2)是定值,詳見(jiàn)解析【解析】
(1)根據(jù)長(zhǎng)軸長(zhǎng)為,離心率,則有求解.(2)設(shè),則,直線,令得,,則,直線,令,得,則,再根據(jù)求解.【詳解】(1)依題意得,解得,則橢圓的方程.(2)設(shè),則,直線,令得,,則,直線,令,得,則,.【點(diǎn)睛】本題主要考查橢圓的方程及直線與橢圓的位置關(guān)系,還考查了平面幾何知識(shí)和運(yùn)算求解的能力,屬于中檔題.20、(1)詳見(jiàn)解析;(2).【解析】
(1)連接,設(shè),可證得四邊形為平行四邊形,由此得到,根據(jù)線面平行判定定理可證得結(jié)論;(2)以為原點(diǎn)建立空間直角坐標(biāo)系,利用二面角的空間向量求法可求得結(jié)果.【詳解】(1)連接,設(shè),連接,在四棱柱中,分別為的中點(diǎn),,四邊形為平行四邊形,,平面,平面,平面.(2)以為原點(diǎn),所在直線分別為軸建立空間直角坐標(biāo)系.設(shè),四邊形為正方形,,,則,,,,,,,設(shè)為平面的法向量,為平面的法向量,由得:,令,則,,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國(guó)外用止痛藥行業(yè)競(jìng)爭(zhēng)格局及投資價(jià)值研究報(bào)告
- 2024-2030年中國(guó)型煤(型焦)行業(yè)發(fā)展前景預(yù)測(cè)規(guī)劃研究報(bào)告
- 2024-2030年中國(guó)四功能折疊健身器產(chǎn)業(yè)未來(lái)發(fā)展趨勢(shì)及投資策略分析報(bào)告
- 2024-2030年中國(guó)印花涂料色漿市場(chǎng)運(yùn)行狀況及發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 梅河口康美職業(yè)技術(shù)學(xué)院《有限元分析與可靠性設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 眉山藥科職業(yè)學(xué)院《小學(xué)道德與法治課程與教學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年物業(yè)買賣合同范本:物業(yè)信息與交易條件
- 2024年度綠色建筑HSE施工與運(yùn)維服務(wù)合同2篇
- 微專題物質(zhì)的制備實(shí)驗(yàn)突破策略-2024高考化學(xué)一輪考點(diǎn)擊破
- 2024年標(biāo)準(zhǔn)專業(yè)施工承包協(xié)議文件版B版
- 道德與法治中考備考建議課件
- 財(cái)產(chǎn)保險(xiǎn)退保申請(qǐng)范文推薦6篇
- 食品工程原理課程設(shè)計(jì)
- YYT 0325-2022 一次性使用無(wú)菌導(dǎo)尿管
- 羊膜在眼科臨床中應(yīng)用課件
- (71)第十五章15.2.3整數(shù)指數(shù)冪1-負(fù)整數(shù)指數(shù)冪-導(dǎo)學(xué)案
- 初步設(shè)計(jì)方案詢價(jià)表
- 2022年江蘇省環(huán)保集團(tuán)有限公司招聘筆試題庫(kù)及答案解析
- 《汽車焊接技術(shù)》試卷期末理論考試含參考答案一套
- FMEA分析經(jīng)典案例【范本模板】
- 2023-2023年山東省學(xué)業(yè)水平考試英語(yǔ)試題及答案
評(píng)論
0/150
提交評(píng)論