版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省青島市平度一中2025屆高考考前模擬數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若集合,,則A. B. C. D.2.設(shè),,,則的大小關(guān)系是()A. B. C. D.3.函數(shù)的圖象向右平移個單位得到函數(shù)的圖象,并且函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則實數(shù)的值為()A. B. C.2 D.4.設(shè)直線過點,且與圓:相切于點,那么()A. B.3 C. D.15.已知集合的所有三個元素的子集記為.記為集合中的最大元素,則()A. B. C. D.6.已知為虛數(shù)單位,若復數(shù),,則A. B.C. D.7.已知復數(shù)(為虛數(shù)單位),則下列說法正確的是()A.的虛部為 B.復數(shù)在復平面內(nèi)對應的點位于第三象限C.的共軛復數(shù) D.8.已知實數(shù)滿足,則的最小值為()A. B. C. D.9.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.10.A. B. C. D.11.已知變量x,y間存在線性相關(guān)關(guān)系,其數(shù)據(jù)如下表,回歸直線方程為,則表中數(shù)據(jù)m的值為()變量x0123變量y35.57A.0.9 B.0.85 C.0.75 D.0.512.設(shè)集合、是全集的兩個子集,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知,則__________.14.在四面體中,與都是邊長為2的等邊三角形,且平面平面,則該四面體外接球的體積為_______.15.在的展開式中,常數(shù)項為________.(用數(shù)字作答)16.如圖是一個幾何體的三視圖,若它的體積是,則_________,該幾何體的表面積為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,,其前n項和為.(1)通過計算,,,猜想并證明數(shù)列的通項公式;(2)設(shè)數(shù)列滿足,,,若數(shù)列是單調(diào)遞減數(shù)列,求常數(shù)t的取值范圍.18.(12分)在中,內(nèi)角的對邊分別是,滿足條件.(1)求角;(2)若邊上的高為,求的長.19.(12分)如圖,在三棱柱中,、、分別是、、的中點.(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.20.(12分)已知分別是的內(nèi)角的對邊,且.(Ⅰ)求.(Ⅱ)若,,求的面積.(Ⅲ)在(Ⅱ)的條件下,求的值.21.(12分)已知數(shù)列的各項都為正數(shù),,且.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè),其中表示不超過x的最大整數(shù),如,,求數(shù)列的前2020項和.22.(10分)已知在中,角,,的對邊分別為,,,的面積為.(1)求證:;(2)若,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
解一元次二次不等式得或,利用集合的交集運算求得.【詳解】因為或,,所以,故選C.【點睛】本題考查集合的交運算,屬于容易題.2、A【解析】
選取中間值和,利用對數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因為對數(shù)函數(shù)在上單調(diào)遞增,所以,因為對數(shù)函數(shù)在上單調(diào)遞減,所以,因為指數(shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【點睛】本題考查利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關(guān)鍵;屬于中檔題、常考題型.3、C【解析】由函數(shù)的圖象向右平移個單位得到,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,可得時,取得最大值,即,,,當時,解得,故選C.點睛:本題主要考查了三角函數(shù)圖象的平移變換和性質(zhì)的靈活運用,屬于基礎(chǔ)題;據(jù)平移變換“左加右減,上加下減”的規(guī)律求解出,根據(jù)函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減可得時,取得最大值,求解可得實數(shù)的值.4、B【解析】
過點的直線與圓:相切于點,可得.因此,即可得出.【詳解】由圓:配方為,,半徑.∵過點的直線與圓:相切于點,∴;∴;故選:B.【點睛】本小題主要考查向量數(shù)量積的計算,考查圓的方程,屬于基礎(chǔ)題.5、B【解析】
分類討論,分別求出最大元素為3,4,5,6的三個元素子集的個數(shù),即可得解.【詳解】集合含有個元素的子集共有,所以.在集合中:最大元素為的集合有個;最大元素為的集合有;最大元素為的集合有;最大元素為的集合有;所以.故選:.【點睛】此題考查集合相關(guān)的新定義問題,其本質(zhì)在于弄清計數(shù)原理,分類討論,分別求解.6、B【解析】
由可得,所以,故選B.7、D【解析】
利用的周期性先將復數(shù)化簡為即可得到答案.【詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復平面內(nèi)對應的點為,在第二象限,B錯誤;的共軛復數(shù)為,C錯誤;,D正確.故選:D.【點睛】本題考查復數(shù)的四則運算,涉及到復數(shù)的虛部、共軛復數(shù)、復數(shù)的幾何意義、復數(shù)的模等知識,是一道基礎(chǔ)題.8、A【解析】
所求的分母特征,利用變形構(gòu)造,再等價變形,利用基本不等式求最值.【詳解】解:因為滿足,則,當且僅當時取等號,故選:.【點睛】本題考查通過拼湊法利用基本不等式求最值.拼湊法的實質(zhì)在于代數(shù)式的靈活變形,拼系數(shù)、湊常數(shù)是關(guān)鍵.(1)拼湊的技巧,以整式為基礎(chǔ),注意利用系數(shù)的變化以及等式中常數(shù)的調(diào)整,做到等價變形;(2)代數(shù)式的變形以拼湊出和或積的定值為目標(3)拆項、添項應注意檢驗利用基本不等式的前提.9、C【解析】
由題意可得面,可知,因為,則面,于是.由此推出三棱錐外接球球心是的中點,進而算出,外接球半徑為1,得出結(jié)果.【詳解】解:由,翻折后得到,又,則面,可知.又因為,則面,于是,因此三棱錐外接球球心是的中點.計算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點睛】本題主要考查簡單的幾何體、球的表面積等基礎(chǔ)知識;考查空間想象能力、推理論證能力、運算求解能力及創(chuàng)新意識,屬于中檔題.10、A【解析】
直接利用復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】本題正確選項:【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)的計算題.11、A【解析】
計算,代入回歸方程可得.【詳解】由題意,,∴,解得.故選:A.【點睛】本題考查線性回歸直線方程,解題關(guān)鍵是掌握性質(zhì):線性回歸直線一定過中心點.12、C【解析】
作出韋恩圖,數(shù)形結(jié)合,即可得出結(jié)論.【詳解】如圖所示,,同時.故選:C.【點睛】本題考查集合關(guān)系及充要條件,注意數(shù)形結(jié)合方法的應用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
首先利用,將其兩邊同時平方,利用同角三角函數(shù)關(guān)系式以及倍角公式得到,從而求得,利用誘導公式求得,得到結(jié)果.【詳解】因為,所以,即,所以,故答案是.【點睛】該題考查的是有關(guān)三角函數(shù)化簡求值問題,涉及到的知識點有同角三角函數(shù)關(guān)系式,倍角公式,誘導公式,屬于簡單題目.14、【解析】
先確定球心的位置,結(jié)合勾股定理可求球的半徑,進而可得球的面積.【詳解】取的外心為,設(shè)為球心,連接,則平面,取的中點,連接,,過做于點,易知四邊形為矩形,連接,,設(shè),.連接,則,,三點共線,易知,所以,.在和中,,,即,,所以,,得.所以.【點睛】本題主要考查幾何體的外接球問題,外接球的半徑的求解一般有兩個思路:一是確定球心位置,利用勾股定理求解半徑;二是利用熟悉的模型求解半徑,比如長方體外接球半徑是其對角線的一半.15、【解析】
的展開式的通項為,取計算得到答案.【詳解】的展開式的通項為:,取得到常數(shù)項.故答案為:.【點睛】本題考查了二項式定理,意在考查學生的計算能力.16、;【解析】試題分析:如圖:此幾何體是四棱錐,底面是邊長為的正方形,平面平面,并且,,所以體積是,解得,四個側(cè)面都是直角三角形,所以計算出邊長,表面積是考點:1.三視圖;2.幾何體的表面積.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),證明見解析;(2)【解析】
(1)首先利用賦值法求出的值,進一步利用定義求出數(shù)列的通項公式;(2)首先利用疊乘法求出數(shù)列的通項公式,進一步利用數(shù)列的單調(diào)性和基本不等式的應用求出參數(shù)的范圍.【詳解】(1)數(shù)列滿足,,其前項和為.所以,,則,,,所以猜想得:.證明:由于,所以,則:(常數(shù)),所以數(shù)列是首項為1,公差為的等差數(shù)列.所以,整理得.(2)數(shù)列滿足,,所以,則,所以.則,所以,所以,整理得,由于,所以,即.【點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應用,疊乘法的應用,函數(shù)的單調(diào)性在數(shù)列中的應用,基本不等式的應用,主要考察學生的運算能力和轉(zhuǎn)換能力,屬于中檔題型.18、(1).(2)【解析】
(1)利用正弦定理的邊角互化可得,再根據(jù),利用兩角和的正弦公式即可求解.(2)已知,由知,在中,解出即可.【詳解】(1)由正弦定理知由己知,而∴,(2)已知,則由知先求∴∴∴【點睛】本題主要考查了正弦定理解三角形、三角形的性質(zhì)、兩角和的正弦公式,需熟記定理與公式,屬于基礎(chǔ)題.19、(1)證明見解析;(2).【解析】
(1)連接,連接、交于點,并連接,則點為的中點,利用中位線的性質(zhì)得出,,利用空間平行線的傳遞性可得出,然后利用線面平行的判定定理可證得結(jié)論;(2)推導出平面,并計算出,由此可得出到平面的距離為,即可得解.【詳解】(1)連接,連接、交于點,并連接,則點為的中點,、分別為、的中點,則,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影為,平面,平面,,為正三角形,且為的中點,,,平面,且,因此,到平面的距離為.【點睛】本題考查線面平行的證明,同時也考查了點到平面距離的計算,考查推理能力與計算能力,屬于中等題.20、(Ⅰ);(Ⅱ);(Ⅲ).【解析】
(Ⅰ)由已知結(jié)合正弦定理先進行代換,然后結(jié)合和差角公式及正弦定理可求;(Ⅱ)由余弦定理可求,然后結(jié)合三角形的面積公式可求;(Ⅲ)結(jié)合二倍角公式及和角余弦公式即可求解.【詳解】(Ⅰ)因為,所以,所以,由正弦定理可得,;(Ⅱ)由余弦定理可得,,整理可得,,解可得,,因為,所以;(Ⅲ)由于,.所以.【點睛】本題主要考查了正弦定理、余弦定理、和角余弦公式,二倍角公式及三角形的面積公式的綜合應用,意在考查學生對這些知識的理解掌握水平.21、(Ⅰ);(Ⅱ)4953【解析】
(Ⅰ)遞推公式變形為,由數(shù)列是正項數(shù)列,得到,根據(jù)數(shù)列是等比數(shù)列求通項公式;(Ⅱ),根據(jù)新定義和對數(shù)的運算分類討論數(shù)列的通項公式,并求前2020項和.【詳解】(Ⅰ)∵,∴,∴又∵數(shù)列的各項都為正數(shù),∴,即.∴數(shù)列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025大學食堂承包合同范本
- 工業(yè)生產(chǎn)車間鋼結(jié)構(gòu)樓梯施工協(xié)議
- 企業(yè)國際化發(fā)展戰(zhàn)
- 住宅小區(qū)批蕩施工合同
- 餐飲業(yè)授權(quán)經(jīng)營的管理辦法
- 投標聯(lián)合體合規(guī)協(xié)議
- 會計審計合同管理規(guī)則
- 零售連鎖公司廣告牌安裝施工合同
- 醫(yī)療技術(shù)合作保險
- 2024年特種用途樹木研發(fā)與銷售合同范本3篇
- 浙江大學醫(yī)學院附屬兒童醫(yī)院招聘人員真題
- 2024年江蘇省蘇州市中考數(shù)學試卷含答案
- 軟件測試匯報
- 吉林省長春市第一〇八學校2024-2025學年七年級上學期期中歷史試題
- 2024年世界職業(yè)院校技能大賽高職組“市政管線(道)數(shù)字化施工組”賽項考試題庫
- 初中《孫中山誕辰紀念日》主題班會
- 5.5 跨學科實踐:制作望遠鏡教學設(shè)計八年級物理上冊(人教版2024)
- 屠呦呦課件教學課件
- 阿斯伯格綜合癥自測題匯博教育員工自測題含答案
- 護理肝癌的疑難病例討論
- 天津市2023-2024學年七年級上學期語文期末試卷(含答案)
評論
0/150
提交評論