廣東省肇慶市2025屆高三第一次調(diào)研測試數(shù)學試卷含解析_第1頁
廣東省肇慶市2025屆高三第一次調(diào)研測試數(shù)學試卷含解析_第2頁
廣東省肇慶市2025屆高三第一次調(diào)研測試數(shù)學試卷含解析_第3頁
廣東省肇慶市2025屆高三第一次調(diào)研測試數(shù)學試卷含解析_第4頁
廣東省肇慶市2025屆高三第一次調(diào)研測試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

廣東省肇慶市2025屆高三第一次調(diào)研測試數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在上函數(shù)滿足,且對任意的不相等的實數(shù)有成立,若關于x的不等式在上恒成立,則實數(shù)m的取值范圍是()A. B. C. D.2.寧波古圣王陽明的《傳習錄》專門講過易經(jīng)八卦圖,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“—”表示一根陽線,“——”表示一根陰線).從八卦中任取兩卦,這兩卦的六根線中恰有四根陰線的概率為()A. B. C. D.3.若復數(shù)滿足,則()A. B. C.2 D.4.某人用隨機模擬的方法估計無理數(shù)的值,做法如下:首先在平面直角坐標系中,過點作軸的垂線與曲線相交于點,過作軸的垂線與軸相交于點(如圖),然后向矩形內(nèi)投入粒豆子,并統(tǒng)計出這些豆子在曲線上方的有粒,則無理數(shù)的估計值是()A. B. C. D.5.《九章算術》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤;斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現(xiàn)在有一根金箠,長五尺在粗的一端截下一尺,重斤;在細的一端截下一尺,重斤,問各尺依次重多少?”按這一問題的顆設,假設金箠由粗到細各尺重量依次成等差數(shù)列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤6.已知為虛數(shù)單位,復數(shù)滿足,則復數(shù)在復平面內(nèi)對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.將函數(shù)向左平移個單位,得到的圖象,則滿足()A.圖象關于點對稱,在區(qū)間上為增函數(shù)B.函數(shù)最大值為2,圖象關于點對稱C.圖象關于直線對稱,在上的最小值為1D.最小正周期為,在有兩個根8.已知函數(shù),,,,則,,的大小關系為()A. B. C. D.9.設命題函數(shù)在上遞增,命題在中,,下列為真命題的是()A. B. C. D.10.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.3 C. D.411.已知函數(shù)是奇函數(shù),則的值為()A.-10 B.-9 C.-7 D.112.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在一次體育水平測試中,甲、乙兩校均有100名學生參加,其中:甲校男生成績的優(yōu)秀率為70%,女生成績的優(yōu)秀率為50%;乙校男生成績的優(yōu)秀率為60%,女生成績的優(yōu)秀率為40%.對于此次測試,給出下列三個結(jié)論:①甲校學生成績的優(yōu)秀率大于乙校學生成績的優(yōu)秀率;②甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率;③甲校學生成績的優(yōu)秀率與甲、乙兩校所有學生成績的優(yōu)秀率的大小關系不確定.其中,所有正確結(jié)論的序號是____________.14.設直線過雙曲線的一個焦點,且與的一條對稱軸垂直,與交于兩點,為的實軸長的2倍,則雙曲線的離心率為.15.某校高二(4)班統(tǒng)計全班同學中午在食堂用餐時間,有7人用時為6分鐘,有14人用時7分鐘,有15人用時為8分鐘,還有4人用時為10分鐘,則高二(4)班全體同學用餐平均用時為____分鐘.16.連續(xù)2次拋擲一顆質(zhì)地均勻的骰子(六個面上分別標有數(shù)字1,2,3,4,5,6的正方體),觀察向上的點數(shù),則事件“點數(shù)之積是3的倍數(shù)”的概率為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)每年的寒冷天氣都會帶熱“御寒經(jīng)濟”,以交通業(yè)為例,當天氣太冷時,不少人都會選擇利用手機上的打車軟件在網(wǎng)上預約出租車出行,出租車公司的訂單數(shù)就會增加.下表是某出租車公司從出租車的訂單數(shù)據(jù)中抽取的5天的日平均氣溫(單位:℃)與網(wǎng)上預約出租車訂單數(shù)(單位:份);日平均氣溫(℃)642網(wǎng)上預約訂單數(shù)100135150185210(1)經(jīng)數(shù)據(jù)分析,一天內(nèi)平均氣溫與該出租車公司網(wǎng)約訂單數(shù)(份)成線性相關關系,試建立關于的回歸方程,并預測日平均氣溫為時,該出租車公司的網(wǎng)約訂單數(shù);(2)天氣預報未來5天有3天日平均氣溫不高于,若把這5天的預測數(shù)據(jù)當成真實的數(shù)據(jù),根據(jù)表格數(shù)據(jù),則從這5天中任意選取2天,求恰有1天網(wǎng)約訂單數(shù)不低于210份的概率.附:回歸直線的斜率和截距的最小二乘法估計分別為:18.(12分)已知在等比數(shù)列中,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列前項的和.19.(12分)已知橢圓的離心率為,且過點,點在第一象限,為左頂點,為下頂點,交軸于點,交軸于點.(1)求橢圓的標準方程;(2)若,求點的坐標.20.(12分)已知,,分別為內(nèi)角,,的對邊,若同時滿足下列四個條件中的三個:①;②;③;④.(1)滿足有解三角形的序號組合有哪些?(2)在(1)所有組合中任選一組,并求對應的面積.(若所選條件出現(xiàn)多種可能,則按計算的第一種可能計分)21.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)把的參數(shù)方程化為極坐標方程:(2)求與交點的極坐標.22.(10分)已知函數(shù).(1)討論函數(shù)的極值;(2)記關于的方程的兩根分別為,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

結(jié)合題意可知是偶函數(shù),且在單調(diào)遞減,化簡題目所給式子,建立不等式,結(jié)合導函數(shù)與原函數(shù)的單調(diào)性關系,構造新函數(shù),計算最值,即可.【詳解】結(jié)合題意可知為偶函數(shù),且在單調(diào)遞減,故可以轉(zhuǎn)換為對應于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點睛】本道題考查了函數(shù)的基本性質(zhì)和導函數(shù)與原函數(shù)單調(diào)性關系,計算范圍,可以轉(zhuǎn)化為函數(shù),結(jié)合導函數(shù),計算最值,即可得出答案.2、B【解析】

根據(jù)古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數(shù),再找出這兩卦的六根線中恰有四根陰線的基本事件數(shù),代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數(shù)種,這兩卦的六根線中恰有四根陰線的基本事件數(shù)有6種,分別是(巽,坤),(兌,坤),(離,坤),(震,艮),(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故選:B【點睛】本題主要考查古典概型的概率,還考查了運算求解的能力,屬于基礎題.3、D【解析】

把已知等式變形,利用復數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)模的計算公式計算.【詳解】解:由題意知,,,∴,故選:D.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)模的求法.4、D【解析】

利用定積分計算出矩形中位于曲線上方區(qū)域的面積,進而利用幾何概型的概率公式得出關于的等式,解出的表達式即可.【詳解】在函數(shù)的解析式中,令,可得,則點,直線的方程為,矩形中位于曲線上方區(qū)域的面積為,矩形的面積為,由幾何概型的概率公式得,所以,.故選:D.【點睛】本題考查利用隨機模擬的思想估算的值,考查了幾何概型概率公式的應用,同時也考查了利用定積分計算平面區(qū)域的面積,考查計算能力,屬于中等題.5、B【解析】

依題意,金箠由粗到細各尺重量構成一個等差數(shù)列,則,由此利用等差數(shù)列性質(zhì)求出結(jié)果.【詳解】設金箠由粗到細各尺重量依次所成得等差數(shù)列為,設首項,則,公差,.故選B【點睛】本題考查了等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于基礎題.6、B【解析】

求出復數(shù),得出其對應點的坐標,確定所在象限.【詳解】由題意,對應點坐標為,在第二象限.故選:B.【點睛】本題考查復數(shù)的幾何意義,考查復數(shù)的除法運算,屬于基礎題.7、C【解析】

由輔助角公式化簡三角函數(shù)式,結(jié)合三角函數(shù)圖象平移變換即可求得的解析式,結(jié)合正弦函數(shù)的圖象與性質(zhì)即可判斷各選項.【詳解】函數(shù),則,將向左平移個單位,可得,由正弦函數(shù)的性質(zhì)可知,的對稱中心滿足,解得,所以A、B選項中的對稱中心錯誤;對于C,的對稱軸滿足,解得,所以圖象關于直線對稱;當時,,由正弦函數(shù)性質(zhì)可知,所以在上的最小值為1,所以C正確;對于D,最小正周期為,當,,由正弦函數(shù)的圖象與性質(zhì)可知,時僅有一個解為,所以D錯誤;綜上可知,正確的為C,故選:C.【點睛】本題考查了三角函數(shù)式的化簡,三角函數(shù)圖象平移變換,正弦函數(shù)圖象與性質(zhì)的綜合應用,屬于中檔題.8、B【解析】

可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識,考查了學生的運算求解能力.9、C【解析】

命題:函數(shù)在上單調(diào)遞減,即可判斷出真假.命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假.【詳解】解:命題:函數(shù),所以,當時,,即函數(shù)在上單調(diào)遞減,因此是假命題.命題:在中,在上單調(diào)遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.10、C【解析】

首先把三視圖轉(zhuǎn)換為幾何體,該幾何體為由一個三棱柱體,切去一個三棱錐體,由柱體、椎體的體積公式進一步求出幾何體的體積.【詳解】解:根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為由一個三棱柱體,切去一個三棱錐體,如圖所示:故:.故選:C.【點睛】本題考查了由三視圖求幾何體的體積、需熟記柱體、椎體的體積公式,考查了空間想象能力,屬于基礎題.11、B【解析】

根據(jù)分段函數(shù)表達式,先求得的值,然后結(jié)合的奇偶性,求得的值.【詳解】因為函數(shù)是奇函數(shù),所以,.故選:B【點睛】本題主要考查分段函數(shù)的解析式、分段函數(shù)求函數(shù)值,考查數(shù)形結(jié)合思想.意在考查學生的運算能力,分析問題、解決問題的能力.12、B【解析】

由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.【點睛】本題考查了空間向量的應用,考查了空間想象能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、②③【解析】

根據(jù)局部頻率和整體頻率的關系,依次判斷每個選項得到答案.【詳解】不能確定甲乙兩校的男女比例,故①不正確;因為甲乙兩校的男生的優(yōu)秀率均大于女生成績的優(yōu)秀率,故甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率,故②正確;因為不能確定甲乙兩校的男女比例,故不能確定甲校學生成績的優(yōu)秀率與甲、乙兩校所有學生成績的優(yōu)秀率的大小關系,故③正確.故答案為:②③.【點睛】本題考查局部頻率和整體頻率的關系,意在考查學生的理解能力和應用能力.14、【解析】

不妨設雙曲線,焦點,令,由的長為實軸的二倍能夠推導出的離心率.【詳解】不妨設雙曲線,焦點,對稱軸,由題設知,因為的長為實軸的二倍,,,,故答案為.【點睛】本題主要考查利用雙曲線的簡單性質(zhì)求雙曲線的離心率,屬于中檔題.求解與雙曲線性質(zhì)有關的問題時要結(jié)合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率問題應先將用有關的一些量表示出來,再利用其中的一些關系構造出關于的等式,從而求出的值.15、7.5【解析】

分別求出所有人用時總和再除以總?cè)藬?shù)即可得到平均數(shù).【詳解】故答案為:7.5【點睛】此題考查求平均數(shù),關鍵在于準確計算出所有數(shù)據(jù)之和,易錯點在于概念辨析不清導致計算出錯.16、【解析】總事件數(shù)為,目標事件:當?shù)谝活w骰子為1,2,4,6,具體事件有,共8種;當?shù)谝活w骰子為3,6,則第二顆骰子隨便都可以,則有種;所以目標事件共20中,所以。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),232;(2)【解析】

(1)根據(jù)公式代入求解;(2)先列出基本事件空間,再列出要求的事件,最后求概率即可.【詳解】解:(1)由表格可求出代入公式求出,所以,所以當時,.所以可預測日平均氣溫為時該出租車公司的網(wǎng)約訂單數(shù)約為232份.(2)記這5天中氣溫不高于的三天分別為,另外兩天分別記為,則在這5天中任意選取2天有,共10個基本事件,其中恰有1天網(wǎng)約訂單數(shù)不低于210份的有,共6個基本事件,所以所求概率,即恰有1天網(wǎng)約訂單數(shù)不低于20份的概率為.【點睛】考查線性回歸系數(shù)的求法以及古典概型求概率的方法,中檔題.18、(1)(2)【解析】

(1)由基本量法,求出公比后可得通項公式;(2)求出,用裂項相消法求和.【詳解】解:(1)設等比數(shù)列的公比為又因為,所以解得(舍)或所以,即(2)據(jù)(1)求解知,,所以所以【點睛】本題考查求等比數(shù)列的通項公式,考查裂項相消法求和.解題方法是基本量法.基本量法是解決等差數(shù)列和等比數(shù)列的基本方法,務必掌握.19、(1);(2)【解析】

(1)由題意得,求出,進而可得到橢圓的方程;(2)由(1)知點,坐標,設直線的方程為,易知,可得點的坐標為,聯(lián)立方程,得到關于的一元二次方程,結(jié)合根與系數(shù)關系,可用表示的坐標,進而由三點共線,即,可用表示的坐標,再結(jié)合,可建立方程,從而求出的值,即可求得點的坐標.【詳解】(1)由題意得,解得,所以橢圓的方程為.(2)由(1)知點,,由題意可設直線的斜率為,則,所以直線的方程為,則點的坐標為,聯(lián)立方程,消去得:.設,則,所以,所以,所以.設點的坐標為,因為點三點共線,所以,即,所以,所以.因為,所以,即,所以,解得,又,所以符合題意,計算可得,,故點的坐標為.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關系的應用,考查平行線的性質(zhì),考查學生的計算求解能力,屬于難題.20、(1)①,③,④或②,③,④;(2).【解析】

(1)由①可求得的值,由②可求出角的值,結(jié)合題意得出,推出矛盾,可得出①②不能同時成為的條件,由此可得出結(jié)論;(2)在符合條件的兩組三角形中利用余弦定理和正弦定理求出對應的邊和角,然后利用三角形的面積公式可求出的面積.【詳解】(1)由①得,,所以,由②得,,解得或(舍),所以,因為,且,所以,所以,矛盾.所以不能同時滿足①,②.故滿足①,③,④或②,③,④;(2)若滿足①,③,④,因為,所以,即.解得.所以的面積.若滿足②,③,④由正弦定理,即,解得,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論