2025屆廣西桂林,百色,梧州,北海,崇左五市高三下學期聯(lián)考數(shù)學試題含解析_第1頁
2025屆廣西桂林,百色,梧州,北海,崇左五市高三下學期聯(lián)考數(shù)學試題含解析_第2頁
2025屆廣西桂林,百色,梧州,北海,崇左五市高三下學期聯(lián)考數(shù)學試題含解析_第3頁
2025屆廣西桂林,百色,梧州,北海,崇左五市高三下學期聯(lián)考數(shù)學試題含解析_第4頁
2025屆廣西桂林,百色,梧州,北海,崇左五市高三下學期聯(lián)考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2025屆廣西桂林,百色,梧州,北海,崇左五市高三下學期聯(lián)考數(shù)學試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量與向量平行,,且,則()A. B.C. D.2.記其中表示不大于x的最大整數(shù),若方程在在有7個不同的實數(shù)根,則實數(shù)k的取值范圍()A. B. C. D.3.已知是的共軛復數(shù),則()A. B. C. D.4.設是兩條不同的直線,是兩個不同的平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,,則 D.若,,,則5.設復數(shù)滿足(為虛數(shù)單位),則復數(shù)的共軛復數(shù)在復平面內(nèi)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.波羅尼斯(古希臘數(shù)學家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現(xiàn)有橢圓=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.7.已知向量,,則向量在向量上的投影是()A. B. C. D.8.三棱錐的各個頂點都在求的表面上,且是等邊三角形,底面,,,若點在線段上,且,則過點的平面截球所得截面的最小面積為()A. B. C. D.9.設命題函數(shù)在上遞增,命題在中,,下列為真命題的是()A. B. C. D.10.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件11.給出下列三個命題:①“”的否定;②在中,“”是“”的充要條件;③將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象.其中假命題的個數(shù)是()A.0 B.1 C.2 D.312.已知等差數(shù)列的前n項和為,且,則()A.4 B.8 C.16 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知(2x-1)7=ao+a1x+a2x2+…+a7x7,則a2=____.14.函數(shù)的定義域為__________.15.關于函數(shù)有下列四個命題:①函數(shù)在上是增函數(shù);②函數(shù)的圖象關于中心對稱;③不存在斜率小于且與函數(shù)的圖象相切的直線;④函數(shù)的導函數(shù)不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號)16.從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,函數(shù)有最小值7.(1)求的值;(2)設,,求證:.18.(12分)已知在中,角,,的對邊分別為,,,且.(1)求的值;(2)若,求面積的最大值.19.(12分)已知橢圓的右焦點為,直線被稱作為橢圓的一條準線,點在橢圓上(異于橢圓左、右頂點),過點作直線與橢圓相切,且與直線相交于點.(1)求證:.(2)若點在軸的上方,當?shù)拿娣e最小時,求直線的斜率.附:多項式因式分解公式:20.(12分)在平面直角坐標系中,已知拋物線C:()的焦點F在直線上,平行于x軸的兩條直線,分別交拋物線C于A,B兩點,交該拋物線的準線于D,E兩點.(1)求拋物線C的方程;(2)若F在線段上,P是的中點,證明:.21.(12分)如圖,在四邊形中,,,.(1)求的長;(2)若的面積為6,求的值.22.(10分)已知數(shù)列中,(實數(shù)為常數(shù)),是其前項和,且數(shù)列是等比數(shù)列,恰為與的等比中項.(1)證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的通項公式;(3)若,當時,的前項和為,求證:對任意,都有.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

設,根據(jù)題意得出關于、的方程組,解出這兩個未知數(shù)的值,即可得出向量的坐標.【詳解】設,且,,由得,即,①,由,②,所以,解得,因此,.故選:B.【點睛】本題考查向量坐標的求解,涉及共線向量的坐標表示和向量數(shù)量積的坐標運算,考查計算能力,屬于中等題.2、D【解析】

做出函數(shù)的圖象,問題轉(zhuǎn)化為函數(shù)的圖象在有7個交點,而函數(shù)在上有3個交點,則在上有4個不同的交點,數(shù)形結(jié)合即可求解.【詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個不同的實數(shù)根,則在上有4個不同的實數(shù)根,當直線經(jīng)過時,;當直線經(jīng)過時,,可知當時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數(shù)根.故選:D.【點睛】本題考查方程根的個數(shù)求參數(shù),利用函數(shù)零點和方程之間的關系轉(zhuǎn)化為兩個函數(shù)的交點是解題的關鍵,運用數(shù)形結(jié)合是解決函數(shù)零點問題的基本思想,屬于中檔題.3、A【解析】

先利用復數(shù)的除法運算法則求出的值,再利用共軛復數(shù)的定義求出a+bi,從而確定a,b的值,求出a+b.【詳解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故選:A.【點睛】本題主要考查了復數(shù)代數(shù)形式的乘除運算,考查了共軛復數(shù)的概念,是基礎題.4、C【解析】

根據(jù)空間中直線與平面、平面與平面位置關系相關定理依次判斷各個選項可得結(jié)果.【詳解】對于,當為內(nèi)與垂直的直線時,不滿足,錯誤;對于,設,則當為內(nèi)與平行的直線時,,但,錯誤;對于,由,知:,又,,正確;對于,設,則當為內(nèi)與平行的直線時,,錯誤.故選:.【點睛】本題考查立體幾何中線面關系、面面關系有關命題的辨析,考查學生對于平行與垂直相關定理的掌握情況,屬于基礎題.5、D【解析】

先把變形為,然后利用復數(shù)代數(shù)形式的乘除運算化簡,求出,得到其坐標可得答案.【詳解】解:由,得,所以,其在復平面內(nèi)對應的點為,在第四象限故選:D【點睛】此題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,屬于基礎題.6、D【解析】

求得定點M的軌跡方程可得,解得a,b即可.【詳解】設A(-a,0),B(a,0),M(x,y).∵動點M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點睛】本題考查了橢圓離心率,動點軌跡,屬于中檔題.7、A【解析】

先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學生概念理解,數(shù)學運算的能力,屬于中檔題.8、A【解析】

由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點E,由SA=4,AD=3SD,得DE=1,所以OD=.則過點D的平面截球O所得截面圓的最小半徑為所以過點D的平面截球O所得截面的最小面積為故選:A【點睛】本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.9、C【解析】

命題:函數(shù)在上單調(diào)遞減,即可判斷出真假.命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假.【詳解】解:命題:函數(shù),所以,當時,,即函數(shù)在上單調(diào)遞減,因此是假命題.命題:在中,在上單調(diào)遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.10、B【解析】

先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B【點睛】本題考查了必要不充分條件的判定,考查了學生數(shù)學運算,邏輯推理能力,屬于基礎題.11、C【解析】

結(jié)合不等式、三角函數(shù)的性質(zhì),對三個命題逐個分析并判斷其真假,即可選出答案.【詳解】對于命題①,因為,所以“”是真命題,故其否定是假命題,即①是假命題;對于命題②,充分性:中,若,則,由余弦函數(shù)的單調(diào)性可知,,即,即可得到,即充分性成立;必要性:中,,若,結(jié)合余弦函數(shù)的單調(diào)性可知,,即,可得到,即必要性成立.故命題②正確;對于命題③,將函數(shù)的圖象向左平移個單位長度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調(diào)性的應用,考查了三角函數(shù)圖象的平移變換,考查了學生的邏輯推理能力,屬于基礎題.12、A【解析】

利用等差的求和公式和等差數(shù)列的性質(zhì)即可求得.【詳解】.故選:.【點睛】本題考查等差數(shù)列的求和公式和等差數(shù)列的性質(zhì),考查基本量的計算,難度容易.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)二項展開式的通項公式即可得結(jié)果.【詳解】解:(2x-1)7的展開式通式為:當時,,則.故答案為:【點睛】本題考查求二項展開式指定項的系數(shù),是基礎題.14、【解析】

根據(jù)函數(shù)成立的條件列不等式組,求解即可得定義域.【詳解】解:要使函數(shù)有意義,則,即.則定義域為:.故答案為:【點睛】本題主要考查定義域的求解,要熟練掌握張建函數(shù)成立的條件.15、①②③【解析】

由單調(diào)性、對稱性概念、導數(shù)的幾何意義、導數(shù)與極值的關系進行判斷.【詳解】函數(shù)的定義域是,由于,在上遞增,∴函數(shù)在上是遞增,①正確;,∴函數(shù)的圖象關于中心對稱,②正確;,時取等號,∴③正確;,設,則,顯然是即的極小值點,④錯誤.故答案為:①②③.【點睛】本題考查函數(shù)的單調(diào)性、對稱性,考查導數(shù)的幾何意義、導數(shù)與極值,解題時按照相關概念判斷即可,屬于中檔題.16、【解析】

基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,由此能求出抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率.【詳解】從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,分別為:,,,,,,,,,,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為.故答案為:【點睛】本題考查古典概型概率的求法,考查運算求解能力,求解時注意辨別概率的模型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2)見解析【解析】

(1)由絕對值三解不等式可得,所以當時,,即可求出參數(shù)的值;(2)由,可得,再利用基本不等式求出的最小值,即可得證;【詳解】解:(1)∵,∴當時,,解得.(2)∵,∴,∴,當且僅當,即,時,等號成立.∴.【點睛】本題主要考查絕對值三角不等式及基本不等式的簡單應用,屬于中檔題.18、(1);(2).【解析】分析:(1)在式子中運用正弦、余弦定理后可得.(2)由經(jīng)三角變換可得,然后運用余弦定理可得,從而得到,故得.詳解:(1)由題意及正、余弦定理得,整理得,∴(2)由題意得,∴,∵,∴,∴.由余弦定理得,∴,,當且僅當時等號成立.∴.∴面積的最大值為.點睛:(1)正、余弦定理經(jīng)常與三角形的面積綜合在一起考查,解題時要注意整體代換的應用,如余弦定理中常用的變形,這樣自然地與三角形的面積公式結(jié)合在一起.(2)運用基本不等式求最值時,要注意等號成立的條件,在解題中必須要注明.19、(1)證明見解析(2)【解析】

(1)由得令可得,進而得到,同理,利用數(shù)量積坐標計算即可;(2),分,兩種情況討論即可.【詳解】(1)證明:點的坐標為.聯(lián)立方程,消去后整理為有,可得,,.可得點的坐標為.當時,可求得點的坐標為,,.有,故有.(2)若點在軸上方,因為,所以有,由(1)知①因為時.由(1)知,由函數(shù)單調(diào)遞增,可得此時.②當時,由(1)知令由,故當時,,此時函數(shù)單調(diào)遞增:當時,,此時函數(shù)單調(diào)遞減,又由,故函數(shù)的最小值,函數(shù)取最小值時,可求得.由①②知,若點在軸上方,當?shù)拿娣e最小時,直線的斜率為.【點睛】本題考查直線與橢圓的位置關系,涉及到分類討論求函數(shù)的最值,考查學生的運算求解能力,是一道難題.20、(1);(2)見解析【解析】

(1)根據(jù)拋物線的焦點在直線上,可求得的值,從而求得拋物線的方程;(2)法一:設直線,的方程分別為和且,,,可得,,,的坐標,進而可得直線的方程,根據(jù)在直線上,可得,再分別求得,,即可得證;法二:設,,則,根據(jù)直線的斜率不為0,設出直線的方程為,聯(lián)立直線和拋物線的方程,結(jié)合韋達定理,分別求出,,化簡,即可得證.【詳解】(1)拋物線C的焦點坐標為,且該點在直線上,所以,解得,故所求拋物線C的方程為(2)法一:由點F在線段上,可設直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論