蘭州交通大學(xué)《模式識別原理與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
蘭州交通大學(xué)《模式識別原理與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
蘭州交通大學(xué)《模式識別原理與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
蘭州交通大學(xué)《模式識別原理與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
蘭州交通大學(xué)《模式識別原理與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁蘭州交通大學(xué)《模式識別原理與應(yīng)用》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的文本摘要生成中,以下哪種方法可能導(dǎo)致生成的摘要與原文主題偏離?()A.過度依賴原文中的高頻詞匯B.未能理解原文的語義結(jié)構(gòu)C.忽略原文中的關(guān)鍵信息D.以上都有可能2、當(dāng)利用人工智能進(jìn)行輿情監(jiān)測和分析,及時了解公眾對某一事件或話題的看法和情緒傾向,以下哪種數(shù)據(jù)來源和分析手段可能是有效的?()A.社交媒體數(shù)據(jù)和情感分析B.新聞評論數(shù)據(jù)和主題建模C.網(wǎng)絡(luò)搜索數(shù)據(jù)和趨勢預(yù)測D.以上都是3、在人工智能的聯(lián)邦學(xué)習(xí)中,假設(shè)多個參與方需要在保護(hù)數(shù)據(jù)隱私的前提下共同訓(xùn)練一個模型。以下哪種技術(shù)或機(jī)制能夠確保數(shù)據(jù)的安全性和隱私性?()A.加密技術(shù),對數(shù)據(jù)和模型參數(shù)進(jìn)行加密傳輸和計(jì)算B.數(shù)據(jù)匿名化,去除數(shù)據(jù)中的敏感信息C.建立可信的第三方機(jī)構(gòu)進(jìn)行數(shù)據(jù)管理D.不采取任何措施,直接共享原始數(shù)據(jù)4、在人工智能的圖像語義分割任務(wù)中,需要將圖像中的每個像素分配到不同的類別,例如將一幅街景圖像中的道路、建筑物、車輛等區(qū)分開來。假設(shè)圖像中的物體邊界模糊、類別多樣,以下哪種方法能夠提高語義分割的精度?()A.使用更高分辨率的圖像進(jìn)行訓(xùn)練B.采用簡單的分割算法,降低計(jì)算復(fù)雜度C.忽略物體邊界的像素,只關(guān)注主要區(qū)域D.不進(jìn)行任何預(yù)處理,直接對原始圖像進(jìn)行分割5、人工智能中的深度學(xué)習(xí)模型通常需要大量的訓(xùn)練數(shù)據(jù)。假設(shè)要訓(xùn)練一個用于圖像分類的卷積神經(jīng)網(wǎng)絡(luò)(CNN),但可用的標(biāo)注數(shù)據(jù)有限。以下哪種方法可能有助于提高模型的性能?()A.使用數(shù)據(jù)增強(qiáng)技術(shù),如翻轉(zhuǎn)、旋轉(zhuǎn)、縮放圖像,增加數(shù)據(jù)的多樣性B.減少模型的層數(shù)和參數(shù)數(shù)量,以降低對數(shù)據(jù)的需求C.直接使用未標(biāo)注的數(shù)據(jù)進(jìn)行訓(xùn)練D.放棄深度學(xué)習(xí)模型,選擇傳統(tǒng)的機(jī)器學(xué)習(xí)算法6、在自然語言處理中,機(jī)器翻譯是一個重要的應(yīng)用。假設(shè)正在開發(fā)一種新的機(jī)器翻譯模型,以下關(guān)于機(jī)器翻譯技術(shù)的描述,正確的是:()A.基于規(guī)則的機(jī)器翻譯方法總是能夠生成最準(zhǔn)確和自然的翻譯結(jié)果B.神經(jīng)網(wǎng)絡(luò)機(jī)器翻譯模型不需要大量的平行語料進(jìn)行訓(xùn)練就能達(dá)到很好的效果C.結(jié)合統(tǒng)計(jì)方法和神經(jīng)網(wǎng)絡(luò)的機(jī)器翻譯模型能夠更好地處理復(fù)雜的語言結(jié)構(gòu)和語義D.機(jī)器翻譯的質(zhì)量只取決于所使用的算法,與語言的文化背景和語境無關(guān)7、人工智能在氣象預(yù)測中的應(yīng)用可以提高預(yù)測的準(zhǔn)確性和精細(xì)化程度。假設(shè)要開發(fā)一個能夠預(yù)測局部地區(qū)短期天氣變化的人工智能模型,需要考慮多種氣象因素的相互作用。以下哪種模型架構(gòu)和訓(xùn)練方法在處理這種復(fù)雜的時空數(shù)據(jù)方面表現(xiàn)更為出色?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)B.長短期記憶網(wǎng)絡(luò)(LSTM)C.門控循環(huán)單元(GRU)D.以上模型結(jié)合使用8、人工智能中的遷移學(xué)習(xí)可以利用已有的預(yù)訓(xùn)練模型來加速新任務(wù)的學(xué)習(xí)。假設(shè)要將一個在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型遷移到醫(yī)學(xué)圖像分析任務(wù)中,以下關(guān)于遷移學(xué)習(xí)的步驟,哪一項(xiàng)是不準(zhǔn)確的?()A.凍結(jié)預(yù)訓(xùn)練模型的部分層,只訓(xùn)練特定任務(wù)相關(guān)的層B.直接在新的醫(yī)學(xué)圖像數(shù)據(jù)集上微調(diào)整個預(yù)訓(xùn)練模型C.對新的數(shù)據(jù)集進(jìn)行數(shù)據(jù)增強(qiáng),以增加數(shù)據(jù)的多樣性D.分析預(yù)訓(xùn)練模型和新任務(wù)之間的差異,選擇合適的遷移策略9、人工智能中的聯(lián)邦學(xué)習(xí)是一種新興的技術(shù)。假設(shè)多個機(jī)構(gòu)想要在保護(hù)數(shù)據(jù)隱私的前提下共同訓(xùn)練一個模型,以下關(guān)于聯(lián)邦學(xué)習(xí)的描述,正確的是:()A.聯(lián)邦學(xué)習(xí)中,各機(jī)構(gòu)的數(shù)據(jù)需要集中到一個中心服務(wù)器進(jìn)行統(tǒng)一訓(xùn)練B.聯(lián)邦學(xué)習(xí)能夠在不共享原始數(shù)據(jù)的情況下實(shí)現(xiàn)模型的協(xié)同訓(xùn)練C.聯(lián)邦學(xué)習(xí)只適用于小規(guī)模的數(shù)據(jù)和簡單的模型結(jié)構(gòu)D.聯(lián)邦學(xué)習(xí)過程中不存在數(shù)據(jù)安全和隱私泄露的風(fēng)險10、在人工智能的研究中,算法的選擇和優(yōu)化至關(guān)重要。以下關(guān)于人工智能算法的敘述,不正確的是()A.不同的算法適用于不同的問題和數(shù)據(jù)特點(diǎn),需要根據(jù)具體情況進(jìn)行選擇B.算法的優(yōu)化可以提高計(jì)算效率和模型性能,例如通過調(diào)整參數(shù)、使用更高效的計(jì)算框架等C.新的算法不斷涌現(xiàn),但傳統(tǒng)的算法在某些情況下仍然具有不可替代的優(yōu)勢D.一旦選擇了一種算法,就不能再進(jìn)行更改和優(yōu)化,否則會影響模型的穩(wěn)定性11、人工智能中的無監(jiān)督學(xué)習(xí)可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和結(jié)構(gòu)。以下關(guān)于無監(jiān)督學(xué)習(xí)的描述,不正確的是()A.聚類分析和主成分分析是常見的無監(jiān)督學(xué)習(xí)方法B.無監(jiān)督學(xué)習(xí)不需要事先標(biāo)注數(shù)據(jù),能夠自動從數(shù)據(jù)中學(xué)習(xí)特征C.無監(jiān)督學(xué)習(xí)的結(jié)果通常難以解釋和評估,應(yīng)用范圍相對較窄D.可以用于數(shù)據(jù)預(yù)處理、特征提取和異常檢測等任務(wù)12、假設(shè)要開發(fā)一個能夠輔助醫(yī)生進(jìn)行疾病診斷的人工智能系統(tǒng),需要整合多種醫(yī)療數(shù)據(jù),如病歷、影像、檢驗(yàn)報告等。在這個過程中,以下哪個環(huán)節(jié)可能是最具挑戰(zhàn)性的?()A.數(shù)據(jù)的清洗和預(yù)處理B.多模態(tài)數(shù)據(jù)的融合C.模型的訓(xùn)練和優(yōu)化D.模型的解釋和可信賴性13、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助提高農(nóng)作物產(chǎn)量和質(zhì)量。假設(shè)要開發(fā)一個能夠監(jiān)測農(nóng)作物病蟲害的系統(tǒng),以下關(guān)于數(shù)據(jù)采集的方式,哪一項(xiàng)是最有效的?()A.依靠農(nóng)民的人工觀察和報告,將信息輸入系統(tǒng)B.使用無人機(jī)搭載的圖像傳感器,定期拍攝農(nóng)田圖像C.僅在農(nóng)作物出現(xiàn)明顯病蟲害癥狀時進(jìn)行數(shù)據(jù)采集D.隨機(jī)選擇農(nóng)田的部分區(qū)域進(jìn)行數(shù)據(jù)采集,以節(jié)省成本14、在人工智能的文本分類任務(wù)中,假設(shè)要對大量的新聞文章進(jìn)行分類,如政治、經(jīng)濟(jì)、體育等。以下關(guān)于特征提取的方法,哪一項(xiàng)是最常用的?()A.使用詞袋模型,將文本表示為詞的頻率向量B.直接將原始文本作為輸入,不進(jìn)行任何特征提取C.運(yùn)用句法分析,提取句子的結(jié)構(gòu)特征D.僅考慮文本的標(biāo)題,忽略正文內(nèi)容15、人工智能中的強(qiáng)化學(xué)習(xí)算法在機(jī)器人足球比賽中可以訓(xùn)練機(jī)器人球員的策略。假設(shè)要讓機(jī)器人球隊(duì)在比賽中取得更好的成績,以下哪個方面是強(qiáng)化學(xué)習(xí)算法需要重點(diǎn)優(yōu)化的?()A.球員的動作控制B.團(tuán)隊(duì)的協(xié)作策略C.球場環(huán)境的建模D.對手行為的預(yù)測二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述人工智能在培訓(xùn)與發(fā)展中的作用。2、(本題5分)談?wù)勅斯ぶ悄茉谥悄軇?chuàng)新潛力評估中的應(yīng)用。3、(本題5分)解釋人工智能在智能倉儲庫存控制中的策略。三、操作題(本大題共5個小題,共25分)1、(本題5分)借助TensorFlow構(gòu)建一個強(qiáng)化學(xué)習(xí)模型,讓智能體學(xué)習(xí)在一個模擬的股票交易環(huán)境中制定投資策略,以最大化收益。考慮股票價格波動、市場趨勢和風(fēng)險因素,評估智能體的投資表現(xiàn)和策略的穩(wěn)定性。2、(本題5分)使用PyTorch框架,構(gòu)建一個卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型來識別MNIST手寫數(shù)字?jǐn)?shù)據(jù)集。對圖像數(shù)據(jù)進(jìn)行增強(qiáng)操作,如翻轉(zhuǎn)、旋轉(zhuǎn)等,使用隨機(jī)梯度下降(SGD)優(yōu)化器訓(xùn)練模型,并繪制訓(xùn)練過程中的損失曲線和準(zhǔn)確率曲線。3、(本題5分)使用Python的PyTorch框架,構(gòu)建一個注意力機(jī)制的神經(jīng)網(wǎng)絡(luò)模型,用于機(jī)器翻譯任務(wù),分析注意力權(quán)重的分布和對翻譯效果的影響。4、(本題5分)在Python中,運(yùn)用粒子群優(yōu)化算法優(yōu)化一個復(fù)雜的多峰函數(shù),展示粒子的位置更新過程和函數(shù)值的優(yōu)化曲線,以及最終找到的最優(yōu)解。5、(本題5分)使用聚類算法對交通流量數(shù)據(jù)進(jìn)行分析,找出擁堵路段和高

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論