山東省青島市開發(fā)區(qū)2025屆高三下學期第六次檢測數學試卷含解析_第1頁
山東省青島市開發(fā)區(qū)2025屆高三下學期第六次檢測數學試卷含解析_第2頁
山東省青島市開發(fā)區(qū)2025屆高三下學期第六次檢測數學試卷含解析_第3頁
山東省青島市開發(fā)區(qū)2025屆高三下學期第六次檢測數學試卷含解析_第4頁
山東省青島市開發(fā)區(qū)2025屆高三下學期第六次檢測數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省青島市開發(fā)區(qū)2025屆高三下學期第六次檢測數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,,,,為的外心,若,,,則()A. B. C. D.2.已知等差數列的前項和為,若,則等差數列公差()A.2 B. C.3 D.43.設函數的定義域為,命題:,的否定是()A., B.,C., D.,4.中國古代數學名著《九章算術》中記載了公元前344年商鞅督造的一種標準量器——商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當該量器口密閉時其表面積為42.2(平方寸),則圖中x的值為()A.3 B.3.4 C.3.8 D.45.設函數在上可導,其導函數為,若函數在處取得極大值,則函數的圖象可能是()A. B.C. D.6.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.設函數的導函數,且滿足,若在中,,則()A. B. C. D.8.已知定義在上的函數的周期為4,當時,,則()A. B. C. D.9.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且10.已知,且,則在方向上的投影為()A. B. C. D.11.若復數滿足(是虛數單位),則的虛部為()A. B. C. D.12.過雙曲線的左焦點作直線交雙曲線的兩天漸近線于,兩點,若為線段的中點,且(為坐標原點),則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設實數滿足約束條件,則的最大值為______.14.從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,則抽得的第一張卡片上的數不小于第二張卡片上的數的概率為__________.15.3張獎券分別標有特等獎、一等獎和二等獎.甲、乙兩人同時各抽取1張獎券,兩人都未抽得特等獎的概率是__________.16.(5分)已知橢圓方程為,過其下焦點作斜率存在的直線與橢圓交于兩點,為坐標原點,則面積的取值范圍是____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在一次電視節(jié)目的答題游戲中,題型為選擇題,只有“A”和“B”兩種結果,其中某選手選擇正確的概率為p,選擇錯誤的概率為q,若選擇正確則加1分,選擇錯誤則減1分,現記“該選手答完n道題后總得分為”.(1)當時,記,求的分布列及數學期望;(2)當,時,求且的概率.18.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中,并解答.已知等差數列的公差為,等差數列的公差為.設分別是數列的前項和,且,,(1)求數列的通項公式;(2)設,求數列的前項和.19.(12分)已知△ABC的內角A,B,C的對邊分別為a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.20.(12分)如圖,已知在三棱錐中,平面,分別為的中點,且.(1)求證:;(2)設平面與交于點,求證:為的中點.21.(12分)已知非零實數滿足.(1)求證:;(2)是否存在實數,使得恒成立?若存在,求出實數的取值范圍;若不存在,請說明理由22.(10分)已知在平面直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線與直線的直角坐標方程;(2)若曲線與直線交于兩點,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

首先根據題中條件和三角形中幾何關系求出,,即可求出的值.【詳解】如圖所示過做三角形三邊的垂線,垂足分別為,,,過分別做,的平行線,,由題知,則外接圓半徑,因為,所以,又因為,所以,,由題可知,所以,,所以.故選:D.【點睛】本題主要考查了三角形外心的性質,正弦定理,平面向量分解定理,屬于一般題.2、C【解析】

根據等差數列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點睛】本題主要考查了等差數列的求和公式,考查了推理能力與計算能力,屬于中檔題.3、D【解析】

根據命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因為:,是全稱命題,所以其否定是特稱命題,即,.故選:D【點睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎題.4、D【解析】

根據三視圖即可求得幾何體表面積,即可解得未知數.【詳解】由圖可知,該幾何體是由一個長寬高分別為和一個底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【點睛】本題考查由三視圖還原幾何體,以及圓柱和長方體表面積的求解,屬綜合基礎題.5、B【解析】

由題意首先確定導函數的符號,然后結合題意確定函數在區(qū)間和處函數的特征即可確定函數圖像.【詳解】函數在上可導,其導函數為,且函數在處取得極大值,當時,;當時,;當時,.時,,時,,當或時,;當時,.故選:【點睛】根據函數取得極大值,判斷導函數在極值點附近左側為正,右側為負,由正負情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.6、A【解析】

本題根據基本不等式,結合選項,判斷得出充分性成立,利用“特殊值法”,通過特取的值,推出矛盾,確定必要性不成立.題目有一定難度,注重重要知識、基礎知識、邏輯推理能力的考查.【詳解】當時,,則當時,有,解得,充分性成立;當時,滿足,但此時,必要性不成立,綜上所述,“”是“”的充分不必要條件.【點睛】易出現的錯誤有,一是基本不等式掌握不熟,導致判斷失誤;二是不能靈活的應用“賦值法”,通過特取的值,從假設情況下推出合理結果或矛盾結果.7、D【解析】

根據的結構形式,設,求導,則,在上是增函數,再根據在中,,得到,,利用余弦函數的單調性,得到,再利用的單調性求解.【詳解】設,所以,因為當時,,即,所以,在上是增函數,在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導數與函數的單調性,還考查了運算求解的能力,屬于中檔題.8、A【解析】

因為給出的解析式只適用于,所以利用周期性,將轉化為,再與一起代入解析式,利用對數恒等式和對數的運算性質,即可求得結果.【詳解】定義在上的函數的周期為4,當時,,,,.故選:A.【點睛】本題考查了利用函數的周期性求函數值,對數的運算性質,屬于中檔題.9、B【解析】

連接,,,,由正四棱柱的特征可知,再由平面的基本性質可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設,則,則,,,由余弦定理,得.故選:B【點睛】本題主要考查異面直線的定義及所成的角和平面的基本性質,還考查了推理論證和運算求解的能力,屬于中檔題.10、C【解析】

由向量垂直的向量表示求出,再由投影的定義計算.【詳解】由可得,因為,所以.故在方向上的投影為.故選:C.【點睛】本題考查向量的數量積與投影.掌握向量垂直與數量積的關系是解題關鍵.11、A【解析】

由得,然后分子分母同時乘以分母的共軛復數可得復數,從而可得的虛部.【詳解】因為,所以,所以復數的虛部為.故選A.【點睛】本題考查了復數的除法運算和復數的概念,屬于基礎題.復數除法運算的方法是分子分母同時乘以分母的共軛復數,轉化為乘法運算.12、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點,∴,則為等腰三角形.∴由雙曲線的的漸近線的性質可得∴∴,即.∴雙曲線的離心率為故選C.點睛:本題考查了橢圓和雙曲線的定義和性質,考查了離心率的求解,同時涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關系應用,對于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

試題分析:作出不等式組所表示的平面區(qū)域如圖,當直線過點時,最大,且考點:線性規(guī)劃.14、【解析】

基本事件總數,抽得的第一張卡片上的數不小于第二張卡片上的數包含的基本事件有10種,由此能求出抽得的第一張卡片上的數不小于第二張卡片上的數的概率.【詳解】從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,基本事件總數,抽得的第一張卡片上的數不小于第二張卡片上的數包含的基本事件有10種,分別為:,,,,,,,,,,則抽得的第一張卡片上的數不小于第二張卡片上的數的概率為.故答案為:【點睛】本題考查古典概型概率的求法,考查運算求解能力,求解時注意辨別概率的模型.15、【解析】

利用排列組合公式進行計算,再利用古典概型公式求出不是特等獎的兩張的概率即可.【詳解】解:3張獎券分別標有特等獎、一等獎和二等獎,甲、乙兩人同時各抽取1張獎券,則兩人同時抽取兩張共有:種排法排除特等獎外兩人選兩張共有:種排法.故兩人都未抽得特等獎的概率是:故答案為:【點睛】本題主要考查古典概型的概率公式的應用,是基礎題.16、【解析】

由題意,,則,得.由題意可設的方程為,,聯立方程組,消去得,恒成立,,,則,點到直線的距離為,則,又,則,當且僅當即時取等號.故面積的取值范圍是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析,0(2)【解析】

(1)即該選手答完3道題后總得分,可能出現的情況為3道題都答對,答對2道答錯1道,答對1道答錯2道,3道題都答錯,進而求解即可;(2)當時,即答完8題后,正確的題數為5題,錯誤的題數是3題,又,則第一題答對,第二題第三題至少有一道答對,進而求解.【詳解】解:(1)的取值可能為,,1,3,又因為,故,,,,所以的分布列為:13所以(2)當時,即答完8題后,正確的題數為5題,錯誤的題數是3題,又已知,第一題答對,若第二題回答正確,則其余6題可任意答對3題;若第二題回答錯誤,第三題回答正確,則后5題可任意答對題,此時的概率為(或).【點睛】本題考查二項分布的分布列及期望,考查數據處理能力,考查分類討論思想.18、(1);(2)【解析】

方案一:(1)根據等差數列的通項公式及前n項和公式列方程組,求出和,從而寫出數列的通項公式;(2)由第(1)題的結論,寫出數列的通項,采用分組求和、等比求和公式以及裂項相消法,求出數列的前項和.其余兩個方案與方案一的解法相近似.【詳解】解:方案一:(1)∵數列都是等差數列,且,,解得,綜上(2)由(1)得:方案二:(1)∵數列都是等差數列,且,解得,.綜上,(2)同方案一方案三:(1)∵數列都是等差數列,且.,解得,,.綜上,(2)同方案一【點睛】本題考查了等差數列的通項公式、前n項和公式的應用,考查了分組求和、等比求和及裂項相消法求數列的前n項和,屬于中檔題.19、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)根據條件由正弦定理得,又c=2a,所以,由余弦定理算出,進而算出;(Ⅱ)由二倍角公式算出,代入兩角和的正弦公式計算即可.【詳解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【點睛】本題主要考查了正余弦定理的應用,運用二倍角公式和兩角和的正弦公式求值,考查了學生的運算求解能力.20、(1)證明見解析;(2)證明見解析.【解析】

(1)要做證明,只需證明平面即可;(2)易得∥平面,平面,利用線面平行的性質定理即可得到∥,從而獲得證明【詳解】證明:(1)因為平面,平面,所以.因為,所以.又因為,平面,平面,所以平面.又因為平面,所以.(2)因為平面與交于點,所以平面.因為分別為的中點,所以∥.又因為平面,平面,所以∥平面.又因為平面,平面平面,所以∥,又因為是的中點,所以為的中點.【點睛】本題考查線面垂直的判定定理以及線面平行的性質定理,考查學生的邏輯推理能力,是一道容易題.21、(1)見解析(2)存在,【解析】

(1)利用作差法即可證出.(2)將不等式通分化簡可得,討論或,分離參數,利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論