版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
甘肅省白銀市靖遠(yuǎn)縣第二中學(xué)2025屆高三最后一卷數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復(fù)數(shù)滿足,則()A. B. C. D.2.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數(shù),黑點為陰數(shù),若從陰數(shù)和陽數(shù)中各取一數(shù),則其差的絕對值為5的概率為A. B. C. D.3.在三棱錐中,,,P在底面ABC內(nèi)的射影D位于直線AC上,且,.設(shè)三棱錐的每個頂點都在球Q的球面上,則球Q的半徑為()A. B. C. D.4.已知向量,,,若,則()A. B. C. D.5.已知復(fù)數(shù)z滿足,則z的虛部為()A. B.i C.–1 D.16.已知集合,則元素個數(shù)為()A.1 B.2 C.3 D.47.定義兩種運算“★”與“◆”,對任意,滿足下列運算性質(zhì):①★,◆;②()★★,◆◆,則(◆2020)(2020★2018)的值為()A. B. C. D.8.在中,角所對的邊分別為,已知,.當(dāng)變化時,若存在最大值,則正數(shù)的取值范圍為A. B. C. D.9.如圖,長方體中,,,點T在棱上,若平面.則()A.1 B. C.2 D.10.已知點在雙曲線上,則該雙曲線的離心率為()A. B. C. D.11.射線測厚技術(shù)原理公式為,其中分別為射線穿過被測物前后的強度,是自然對數(shù)的底數(shù),為被測物厚度,為被測物的密度,是被測物對射線的吸收系數(shù).工業(yè)上通常用镅241()低能射線測量鋼板的厚度.若這種射線對鋼板的半價層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數(shù)為()(注:半價層厚度是指將已知射線強度減弱為一半的某種物質(zhì)厚度,,結(jié)果精確到0.001)A.0.110 B.0.112 C. D.12.在平面直角坐標(biāo)系中,已知角的頂點與原點重合,始邊與軸的非負(fù)半軸重合,終邊落在直線上,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,點的坐標(biāo)為,點是直線:上位于第一象限內(nèi)的一點.已知以為直徑的圓被直線所截得的弦長為,則點的坐標(biāo)__________.14.四邊形中,,,,,則的最小值是______.15.設(shè)函數(shù),則滿足的的取值范圍為________.16.將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則函數(shù)的最大值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱柱中,底面為菱形,.(1)證明:平面平面;(2)若,是等邊三角形,求二面角的余弦值.18.(12分)已知函數(shù),它的導(dǎo)函數(shù)為.(1)當(dāng)時,求的零點;(2)當(dāng)時,證明:.19.(12分)在平面直角坐標(biāo)系中,已知橢圓:()的左、右焦點分別為、,且點、與橢圓的上頂點構(gòu)成邊長為2的等邊三角形.(1)求橢圓的方程;(2)已知直線與橢圓相切于點,且分別與直線和直線相交于點、.試判斷是否為定值,并說明理由.20.(12分)橢圓:()的離心率為,它的四個頂點構(gòu)成的四邊形面積為.(1)求橢圓的方程;(2)設(shè)是直線上任意一點,過點作圓的兩條切線,切點分別為,,求證:直線恒過一個定點.21.(12分)已知橢圓,點,點滿足(其中為坐標(biāo)原點),點在橢圓上.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的右焦點為,若不經(jīng)過點的直線與橢圓交于兩點.且與圓相切.的周長是否為定值?若是,求出定值;若不是,請說明理由.22.(10分)已知函數(shù).(1)討論的零點個數(shù);(2)證明:當(dāng)時,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題意得,,求解即可.【詳解】因為,所以.故選:B.【點睛】本題考查復(fù)數(shù)的四則運算,考查運算求解能力,屬于基礎(chǔ)題.2、A【解析】
陽數(shù):,陰數(shù):,然后分析陰數(shù)和陽數(shù)差的絕對值為5的情況數(shù),最后計算相應(yīng)概率.【詳解】因為陽數(shù):,陰數(shù):,所以從陰數(shù)和陽數(shù)中各取一數(shù)差的絕對值有:個,滿足差的絕對值為5的有:共個,則.故選:A.【點睛】本題考查實際背景下古典概型的計算,難度一般.古典概型的概率計算公式:.3、A【解析】
設(shè)的中點為O先求出外接圓的半徑,設(shè),利用平面ABC,得,在及中利用勾股定理構(gòu)造方程求得球的半徑即可【詳解】設(shè)的中點為O,因為,所以外接圓的圓心M在BO上.設(shè)此圓的半徑為r.因為,所以,解得.因為,所以.設(shè),易知平面ABC,則.因為,所以,即,解得.所以球Q的半徑.故選:A【點睛】本題考查球的組合體,考查空間想象能力,考查計算求解能力,是中檔題4、A【解析】
根據(jù)向量坐標(biāo)運算求得,由平行關(guān)系構(gòu)造方程可求得結(jié)果.【詳解】,,解得:故選:【點睛】本題考查根據(jù)向量平行關(guān)系求解參數(shù)值的問題,涉及到平面向量的坐標(biāo)運算;關(guān)鍵是明確若兩向量平行,則.5、C【解析】
利用復(fù)數(shù)的四則運算可得,即可得答案.【詳解】∵,∴,∴,∴復(fù)數(shù)的虛部為.故選:C.【點睛】本題考查復(fù)數(shù)的四則運算、虛部概念,考查運算求解能力,屬于基礎(chǔ)題.6、B【解析】
作出兩集合所表示的點的圖象,可得選項.【詳解】由題意得,集合A表示以原點為圓心,以2為半徑的圓,集合B表示函數(shù)的圖象上的點,作出兩集合所表示的點的示意圖如下圖所示,得出兩個圖象有兩個交點:點A和點B,所以兩個集合有兩個公共元素,所以元素個數(shù)為2,故選:B.【點睛】本題考查集合的交集運算,關(guān)鍵在于作出集合所表示的點的圖象,再運用數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.7、B【解析】
根據(jù)新運算的定義分別得出◆2020和2020★2018的值,可得選項.【詳解】由()★★,得(+2)★★,又★,所以★,★,★,,以此類推,2020★2018★2018,又◆◆,◆,所以◆,◆,◆,,以此類推,◆2020,所以(◆2020)(2020★2018),故選:B.【點睛】本題考查定義新運算,關(guān)鍵在于理解,運用新定義進(jìn)行求值,屬于中檔題.8、C【解析】
因為,,所以根據(jù)正弦定理可得,所以,,所以,其中,,因為存在最大值,所以由,可得,所以,所以,解得,所以正數(shù)的取值范圍為,故選C.9、D【解析】
根據(jù)線面垂直的性質(zhì),可知;結(jié)合即可證明,進(jìn)而求得.由線段關(guān)系及平面向量數(shù)量積定義即可求得.【詳解】長方體中,,點T在棱上,若平面.則,則,所以,則,所以,故選:D.【點睛】本題考查了直線與平面垂直的性質(zhì)應(yīng)用,平面向量數(shù)量積的運算,屬于基礎(chǔ)題.10、C【解析】
將點A坐標(biāo)代入雙曲線方程即可求出雙曲線的實軸長和虛軸長,進(jìn)而求得離心率.【詳解】將,代入方程得,而雙曲線的半實軸,所以,得離心率,故選C.【點睛】此題考查雙曲線的標(biāo)準(zhǔn)方程和離心率的概念,屬于基礎(chǔ)題.11、C【解析】
根據(jù)題意知,,代入公式,求出即可.【詳解】由題意可得,因為,所以,即.所以這種射線的吸收系數(shù)為.故選:C【點睛】本題主要考查知識的遷移能力,把數(shù)學(xué)知識與物理知識相融合;重點考查指數(shù)型函數(shù),利用指數(shù)的相關(guān)性質(zhì)來研究指數(shù)型函數(shù)的性質(zhì),以及解指數(shù)型方程;屬于中檔題.12、C【解析】
利用誘導(dǎo)公式以及二倍角公式,將化簡為關(guān)于的形式,結(jié)合終邊所在的直線可知的值,從而可求的值.【詳解】因為,且,所以.故選:C.【點睛】本題考查三角函數(shù)中的誘導(dǎo)公式以及三角恒等變換中的二倍角公式,屬于給角求值類型的問題,難度一般.求解值的兩種方法:(1)分別求解出的值,再求出結(jié)果;(2)將變形為,利用的值求出結(jié)果.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
依題意畫圖,設(shè),根據(jù)圓的直徑所對的圓周角為直角,可得,通過勾股定理得,再利用兩點間的距離公式即可求出,進(jìn)而得出點坐標(biāo).【詳解】解:依題意畫圖,設(shè)以為直徑的圓被直線所截得的弦長為,且,又因為為圓的直徑,則所對的圓周角,則,則為點到直線:的距離.所以,則.又因為點在直線:上,設(shè),則.解得,則.故答案為:【點睛】本題考查了直線與圓的位置關(guān)系,考查了兩點間的距離公式,點到直線的距離公式,是基礎(chǔ)題.14、【解析】
在中利用正弦定理得出,進(jìn)而可知,當(dāng)時,取最小值,進(jìn)而計算出結(jié)果.【詳解】,如圖,在中,由正弦定理可得,即,故當(dāng)時,取到最小值為.故答案為:.【點睛】本題考查解三角形,同時也考查了常見的三角函數(shù)值,考查邏輯推理能力與計算能力,屬于中檔題.15、【解析】
當(dāng)時,函數(shù)單調(diào)遞增,當(dāng)時,函數(shù)為常數(shù),故需滿足,且,解得答案.【詳解】,當(dāng)時,函數(shù)單調(diào)遞增,當(dāng)時,函數(shù)為常數(shù),需滿足,且,解得.故答案為:.【點睛】本題考查了根據(jù)函數(shù)單調(diào)性解不等式,意在考查學(xué)生對于函數(shù)性質(zhì)的靈活運用.16、【解析】
由三角函數(shù)圖象相位變換后表達(dá)函數(shù)解析式,再利用三角恒等變換與輔助角公式整理的表達(dá)式,進(jìn)而由三角函數(shù)值域求得最大值.【詳解】將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則所以,當(dāng)函數(shù)最大,最大值為故答案為:【點睛】本題考查表示三角函數(shù)圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡函數(shù)式并求最值,屬于簡單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)根據(jù)面面垂直的判定定理可知,只需證明平面即可.由為菱形可得,連接和與的交點,由等腰三角形性質(zhì)可得,即能證得平面;(2)由題意知,平面,可建立空間直角坐標(biāo)系,以為坐標(biāo)原點,所在直線為軸,所在直線為軸,所在直線為軸,再分別求出平面的法向量,平面的法向量,即可根據(jù)向量法求出二面角的余弦值.【詳解】(1)如圖,設(shè)與相交于點,連接,又為菱形,故,為的中點.又,故.又平面,平面,且,故平面,又平面,所以平面平面.(2)由是等邊三角形,可得,故平面,所以,,兩兩垂直.如圖以為坐標(biāo)原點,所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.不妨設(shè),則,,則,,,,,,設(shè)為平面的法向量,則即可取,設(shè)為平面的法向量,則即可取,所以.所以二面角的余弦值為0.【點睛】本題主要考查線面垂直的判定定理,面面垂直的判定定理的應(yīng)用,以及利用向量法求二面角,意在考查學(xué)生的直觀想象能力,邏輯推理能力和數(shù)學(xué)運算能力,屬于基礎(chǔ)題.18、(1)見解析;(2)證明見解析.【解析】
當(dāng)時,求函數(shù)的導(dǎo)數(shù),判斷導(dǎo)函數(shù)的單調(diào)性,計算即為導(dǎo)函數(shù)的零點;
當(dāng)時,分類討論x的范圍,可令新函數(shù),計算新函數(shù)的最值可證明.【詳解】(1)的定義域為當(dāng)時,,,易知為上的增函數(shù),又,所以是的唯一零點;(2)證明:當(dāng)時,,①若,則,所以成立,②若,設(shè),則,令,則,因為,所以,從而在上單調(diào)遞增,所以,即,在上單調(diào)遞增;所以,即,故.【點睛】本題主要考查導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,單調(diào)性,零點的求法.注意分類討論和構(gòu)造新函數(shù)求函數(shù)的最值的應(yīng)用.19、(1)(2)為定值.【解析】
(1)根據(jù)題意,得出,從而得出橢圓的標(biāo)準(zhǔn)方程.(2)根據(jù)題意設(shè)直線方程:,因為直線與橢圓相切,這有一個交點,聯(lián)立直線與橢圓方程得,則,解得①把和代入,得和,,的表達(dá)式,比即可得出為定值.【詳解】解:(1)依題意,,,.所以橢圓的標(biāo)準(zhǔn)方程為.(2)為定值.①因為直線分別與直線和直線相交,所以,直線一定存在斜率.②設(shè)直線:,由得,由,得.①把代入,得,把代入,得,又因為,所以,,②由①式,得,③把③式代入②式,得,,即為定值.【點睛】本題考查橢圓的定義、方程、和性質(zhì),主要考查橢圓方程的運用,考查橢圓的定值問題,考查計算能力和轉(zhuǎn)化思想,是中檔題.20、(1);(2)證明見解析.【解析】
(1)根據(jù)橢圓的基本性質(zhì)列出方程組,即可得出橢圓方程;(2)設(shè)點,,,由,,結(jié)合斜率公式化簡得出,,即,滿足,由的任意性,得出直線恒過一個定點.【詳解】(1)依題意得,解得即橢圓:;(2)設(shè)點,,其中,由,得,即,注意到,于是,因此,滿足由的任意性知,,,即直線恒過一個定點.【點睛】本題主要考查了求橢圓的方程,直線過定點問題,屬于中檔題.21、(1)(2)是,【解析】
(1)設(shè),根據(jù)條件可求出的坐標(biāo),再利用在橢圓上,代入橢圓方程求出即可;(2)設(shè)運用勾股定理和點滿足橢圓方程,求出,,再利用焦半徑公式表示出,進(jìn)而求出周長為定值.【詳解】(1)設(shè),因為,即則,即,因為均在上,代入得,解得,所以橢圓的方程為;(2)由(1)得,作出示意圖,設(shè)切點為,則,同理即,所以,又,則的周長,所以周長為定值.【點睛】標(biāo)準(zhǔn)方程的求解,橢圓中的定值問題,考查焦半徑公式的運用,考查邏輯推理能力和運算求解能力,難度較難.22、(1)見解析(2)見解析【解析】
(1)求出,分別以當(dāng),,時,結(jié)合函數(shù)的單調(diào)性和最值判斷零點的個數(shù).(2)令,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海車位購買協(xié)議范本(2024版)版B版
- 二零二五版廢舊設(shè)備買賣及環(huán)境評估協(xié)議3篇
- 二零二五年度食堂承包與營養(yǎng)搭配服務(wù)合同3篇
- 2025年生物科技企業(yè)部分股權(quán)增資擴股合同3篇
- 2025年鮮羊奶行業(yè)新型經(jīng)銷商合作模式合同范本3篇
- 二零二五年度原創(chuàng)動漫角色形象知識產(chǎn)權(quán)歸屬協(xié)議下載2篇
- 二零二五年空壓機設(shè)備銷售與安裝驗收合同2篇
- 2025年度高速公路服務(wù)區(qū)智能停車場車位租用合同范本
- 2025年度個人跨境電商擔(dān)保代理合同4篇
- 2025年度科技創(chuàng)新型企業(yè)法人股權(quán)激勵聘用合同范本
- 青島版二年級下冊三位數(shù)加減三位數(shù)豎式計算題200道及答案
- GB/T 12723-2024單位產(chǎn)品能源消耗限額編制通則
- GB/T 16288-2024塑料制品的標(biāo)志
- 麻風(fēng)病防治知識課件
- 干部職級晉升積分制管理辦法
- TSG ZF003-2011《爆破片裝置安全技術(shù)監(jiān)察規(guī)程》
- 2024年代理記賬工作總結(jié)6篇
- 電氣工程預(yù)算實例:清單與計價樣本
- VOC廢氣治理工程中電化學(xué)氧化技術(shù)的研究與應(yīng)用
- 煤礦機電設(shè)備培訓(xùn)課件
- 高考寫作指導(dǎo)議論文標(biāo)準(zhǔn)語段寫作課件32張
評論
0/150
提交評論