漯河職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析與統(tǒng)計(jì)軟件應(yīng)用B》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
漯河職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析與統(tǒng)計(jì)軟件應(yīng)用B》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
漯河職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析與統(tǒng)計(jì)軟件應(yīng)用B》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
漯河職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析與統(tǒng)計(jì)軟件應(yīng)用B》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
漯河職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析與統(tǒng)計(jì)軟件應(yīng)用B》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)漯河職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析與統(tǒng)計(jì)軟件應(yīng)用B》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,評(píng)估模型的性能是重要的環(huán)節(jié)。假設(shè)我們已經(jīng)建立了一個(gè)預(yù)測(cè)模型。以下關(guān)于模型評(píng)估的描述,哪一項(xiàng)是不正確的?()A.可以使用交叉驗(yàn)證來(lái)評(píng)估模型的穩(wěn)定性和泛化能力B.混淆矩陣可以幫助我們分析模型在不同類別上的預(yù)測(cè)情況C.準(zhǔn)確率是評(píng)估模型性能的唯一指標(biāo),準(zhǔn)確率越高模型越好D.可以根據(jù)具體問(wèn)題選擇合適的評(píng)估指標(biāo),如召回率、F1值等2、數(shù)據(jù)挖掘在發(fā)現(xiàn)隱藏模式和知識(shí)方面發(fā)揮著重要作用。假設(shè)要從大量銷售數(shù)據(jù)中挖掘潛在的客戶購(gòu)買模式,以下關(guān)于數(shù)據(jù)挖掘技術(shù)選擇的描述,正確的是:()A.僅使用關(guān)聯(lián)規(guī)則挖掘,不考慮其他技術(shù)B.盲目應(yīng)用所有的數(shù)據(jù)挖掘算法,不考慮數(shù)據(jù)特點(diǎn)和業(yè)務(wù)需求C.結(jié)合聚類分析、分類算法和關(guān)聯(lián)規(guī)則挖掘等技術(shù),根據(jù)數(shù)據(jù)特點(diǎn)和問(wèn)題需求選擇合適的方法D.認(rèn)為數(shù)據(jù)挖掘結(jié)果一定準(zhǔn)確,無(wú)需進(jìn)一步驗(yàn)證和解釋3、在數(shù)據(jù)庫(kù)設(shè)計(jì)中,以下哪個(gè)原則有助于提高數(shù)據(jù)庫(kù)的性能和可擴(kuò)展性?()A.規(guī)范化B.反規(guī)范化C.減少冗余D.增加索引4、在數(shù)據(jù)分析的預(yù)測(cè)模型選擇中,假設(shè)數(shù)據(jù)具有非線性和復(fù)雜的特征,且樣本數(shù)量有限。以下哪種模型可能在這種情況下表現(xiàn)更出色?()A.決策樹(shù)集成模型,如隨機(jī)森林B.神經(jīng)網(wǎng)絡(luò),具有強(qiáng)大的擬合能力C.支持向量回歸,處理小樣本D.堅(jiān)持使用簡(jiǎn)單的線性模型5、在進(jìn)行數(shù)據(jù)抽樣時(shí),需要根據(jù)不同的目的選擇合適的抽樣方法。假設(shè)要對(duì)一個(gè)大型電商平臺(tái)的用戶購(gòu)買行為數(shù)據(jù)進(jìn)行抽樣,以估計(jì)總體的平均消費(fèi)金額,同時(shí)希望抽樣結(jié)果具有較好的代表性。以下哪種抽樣方法可能是最合適的?()A.簡(jiǎn)單隨機(jī)抽樣B.分層抽樣C.系統(tǒng)抽樣D.整群抽樣6、數(shù)據(jù)分析中的關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)數(shù)據(jù)中項(xiàng)之間的關(guān)聯(lián)關(guān)系。假設(shè)我們要分析超市購(gòu)物籃數(shù)據(jù)。以下關(guān)于關(guān)聯(lián)規(guī)則挖掘的描述,哪一項(xiàng)是錯(cuò)誤的?()A.支持度表示項(xiàng)集在數(shù)據(jù)集中出現(xiàn)的頻率B.置信度表示在包含前提項(xiàng)集的情況下,包含結(jié)果項(xiàng)集的概率C.提升度大于1表示關(guān)聯(lián)規(guī)則是有效的,小于1表示是無(wú)效的D.關(guān)聯(lián)規(guī)則挖掘只能發(fā)現(xiàn)簡(jiǎn)單的兩兩關(guān)聯(lián)關(guān)系,不能處理復(fù)雜的關(guān)聯(lián)模式7、對(duì)于一個(gè)包含大量文本和數(shù)值混合數(shù)據(jù)的數(shù)據(jù)集,以下哪種預(yù)處理方法較為常見(jiàn)?()A.文本向量化B.數(shù)值標(biāo)準(zhǔn)化C.特征工程D.以上都是8、在數(shù)據(jù)清洗過(guò)程中,若發(fā)現(xiàn)數(shù)據(jù)存在異常值,以下哪種處理方式較為合理?()A.直接刪除異常值B.對(duì)異常值進(jìn)行修正C.將異常值視為缺失值處理D.分析異常值產(chǎn)生的原因后再?zèng)Q定處理方式9、數(shù)據(jù)分析中的數(shù)據(jù)質(zhì)量評(píng)估需要從多個(gè)方面衡量數(shù)據(jù)的優(yōu)劣。假設(shè)要評(píng)估一個(gè)收集的市場(chǎng)調(diào)研數(shù)據(jù)的質(zhì)量,包括準(zhǔn)確性、完整性、一致性和時(shí)效性等方面。以下哪種數(shù)據(jù)質(zhì)量評(píng)估指標(biāo)在綜合評(píng)估數(shù)據(jù)質(zhì)量時(shí)更具全面性和客觀性?()A.數(shù)據(jù)質(zhì)量得分B.數(shù)據(jù)質(zhì)量矩陣C.數(shù)據(jù)質(zhì)量報(bào)告D.以上方法效果相同10、數(shù)據(jù)分析中的數(shù)據(jù)隱私保護(hù)是一個(gè)重要的問(wèn)題。假設(shè)一家公司要對(duì)員工的個(gè)人數(shù)據(jù)進(jìn)行分析,同時(shí)需要確保數(shù)據(jù)的使用符合法律和道德規(guī)范。以下哪種措施可能有助于保護(hù)員工的隱私?()A.匿名化處理數(shù)據(jù)B.只在公司內(nèi)部網(wǎng)絡(luò)中分析數(shù)據(jù)C.獲得員工的明確同意D.以上措施都有助于保護(hù)隱私11、在數(shù)據(jù)分析中,對(duì)于高維度的數(shù)據(jù),例如基因表達(dá)數(shù)據(jù)、圖像數(shù)據(jù)等,需要進(jìn)行降維處理以簡(jiǎn)化分析。以下哪種降維方法可能是常用的?()A.主成分分析(PCA)B.線性判別分析(LDA)C.局部線性嵌入(LLE)D.以上都是12、在數(shù)據(jù)分析中,建立合適的預(yù)測(cè)模型是常見(jiàn)的任務(wù)。假設(shè)你要預(yù)測(cè)下個(gè)月某產(chǎn)品的銷售量,有歷史銷售數(shù)據(jù)和相關(guān)的市場(chǎng)因素?cái)?shù)據(jù)。以下關(guān)于預(yù)測(cè)模型的選擇,哪一項(xiàng)是最需要考慮的因素?()A.模型的復(fù)雜程度,越復(fù)雜的模型通常預(yù)測(cè)效果越好B.數(shù)據(jù)的特點(diǎn)和規(guī)模,選擇適合數(shù)據(jù)的模型C.模型的訓(xùn)練時(shí)間,選擇訓(xùn)練速度快的模型D.模型在其他類似問(wèn)題中的應(yīng)用效果,直接套用13、在對(duì)一家制造業(yè)企業(yè)的生產(chǎn)數(shù)據(jù)進(jìn)行分析,例如原材料采購(gòu)、生產(chǎn)流程、產(chǎn)品質(zhì)量等,以優(yōu)化生產(chǎn)過(guò)程和降低成本。以下哪種數(shù)據(jù)分析工具可能最適合處理大規(guī)模的工業(yè)數(shù)據(jù)?()A.ExcelB.PythonC.SPSSD.SQL14、在進(jìn)行數(shù)據(jù)倉(cāng)庫(kù)設(shè)計(jì)時(shí),需要考慮數(shù)據(jù)的存儲(chǔ)和組織方式。假設(shè)要為一個(gè)大型企業(yè)構(gòu)建數(shù)據(jù)倉(cāng)庫(kù),以支持復(fù)雜的查詢和分析需求。以下哪種數(shù)據(jù)倉(cāng)庫(kù)架構(gòu)在處理大規(guī)模企業(yè)數(shù)據(jù)時(shí)更具擴(kuò)展性和性能優(yōu)勢(shì)?()A.星型架構(gòu)B.雪花架構(gòu)C.混合架構(gòu)D.以上架構(gòu)沒(méi)有區(qū)別15、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的算法有很多,其中決策樹(shù)是一種常用的算法。以下關(guān)于決策樹(shù)的描述中,錯(cuò)誤的是?()A.決策樹(shù)可以用于分類和回歸問(wèn)題B.決策樹(shù)的構(gòu)建過(guò)程是自頂向下的C.決策樹(shù)的葉子節(jié)點(diǎn)表示最終的分類結(jié)果或預(yù)測(cè)值D.決策樹(shù)的算法復(fù)雜度較低,適用于大規(guī)模數(shù)據(jù)集16、在進(jìn)行數(shù)據(jù)分析以評(píng)估一個(gè)新的市場(chǎng)營(yíng)銷活動(dòng)的效果時(shí),比如分析活動(dòng)前后的客戶流量、購(gòu)買轉(zhuǎn)化率和客戶滿意度等指標(biāo)的變化。由于活動(dòng)期間可能受到其他外部因素的干擾,為了準(zhǔn)確評(píng)估活動(dòng)的貢獻(xiàn),以下哪種方法可能是合適的?()A.建立對(duì)照組進(jìn)行對(duì)比B.只關(guān)注活動(dòng)期間的數(shù)據(jù)C.忽略外部因素的影響D.憑經(jīng)驗(yàn)主觀判斷17、數(shù)據(jù)分析中的異常值檢測(cè)對(duì)于識(shí)別數(shù)據(jù)中的異常情況非常重要。假設(shè)在一個(gè)生產(chǎn)過(guò)程的質(zhì)量控制數(shù)據(jù)集中發(fā)現(xiàn)了異常值,以下哪種方法可能有助于確定這些異常值是由隨機(jī)誤差還是系統(tǒng)故障引起的?()A.比較異常值與歷史數(shù)據(jù)的模式B.查看生產(chǎn)過(guò)程中的其他相關(guān)參數(shù)C.咨詢生產(chǎn)線上的工作人員D.以上方法都可能有幫助18、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),可能會(huì)遇到數(shù)據(jù)不一致的問(wèn)題。假設(shè)你要將銷售數(shù)據(jù)和客戶數(shù)據(jù)進(jìn)行關(guān)聯(lián),以下關(guān)于處理數(shù)據(jù)不一致的方法,哪一項(xiàng)是最恰當(dāng)?shù)??()A.忽略不一致的數(shù)據(jù),只關(guān)聯(lián)一致的部分B.手動(dòng)修正不一致的數(shù)據(jù),確保關(guān)聯(lián)的準(zhǔn)確性C.使用數(shù)據(jù)轉(zhuǎn)換和映射規(guī)則,將不一致的數(shù)據(jù)統(tǒng)一D.不進(jìn)行關(guān)聯(lián),直接分別分析兩組數(shù)據(jù)19、在數(shù)據(jù)分析中,若要比較多個(gè)總體的均值是否相等,以下哪種方法較為常用?()A.方差分析B.多重比較C.假設(shè)檢驗(yàn)D.以上都是20、假設(shè)要分析兩個(gè)變量之間是否存在因果關(guān)系,以下哪種方法較為合適?()A.相關(guān)性分析B.格蘭杰因果檢驗(yàn)C.回歸分析D.以上都不是二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)闡述數(shù)據(jù)挖掘中的圖像挖掘的主要任務(wù)和方法,如圖像分類、目標(biāo)檢測(cè)等,并舉例說(shuō)明在醫(yī)療影像數(shù)據(jù)分析中的應(yīng)用。2、(本題5分)闡述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的公平性評(píng)估,包括算法公平性、結(jié)果公平性等方面的評(píng)估指標(biāo)和方法。3、(本題5分)在進(jìn)行數(shù)據(jù)分析時(shí),如何進(jìn)行數(shù)據(jù)的探索性分析(EDA)?解釋EDA的主要步驟和目的,以及常用的工具和技術(shù)。4、(本題5分)在數(shù)據(jù)分析中,如何處理缺失值?請(qǐng)介紹多種處理缺失值的方法,并分析它們的優(yōu)缺點(diǎn)及適用場(chǎng)景。5、(本題5分)描述數(shù)據(jù)分析中的模型評(píng)估中的混淆矩陣的構(gòu)成和用途,說(shuō)明如何通過(guò)混淆矩陣計(jì)算準(zhǔn)確率、召回率等指標(biāo),并舉例說(shuō)明。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某社交游戲平臺(tái)的團(tuán)隊(duì)競(jìng)技游戲存有用戶數(shù)據(jù),如團(tuán)隊(duì)配合度、游戲勝負(fù)、游戲時(shí)長(zhǎng)、玩家等級(jí)等。分析團(tuán)隊(duì)配合度與游戲勝負(fù)和游戲時(shí)長(zhǎng)的關(guān)系。2、(本題5分)某物流公司積累了貨物運(yùn)輸?shù)钠瘘c(diǎn)、終點(diǎn)、運(yùn)輸方式、運(yùn)輸時(shí)間等數(shù)據(jù)。分析如何基于這些數(shù)據(jù)優(yōu)化運(yùn)輸網(wǎng)絡(luò)和資源配置。3、(本題5分)一家房地產(chǎn)中介公司擁有房屋租賃數(shù)據(jù),包括房屋位置、戶型、面積、租金、租賃周期等。研究不同位置和戶型的房屋租金與租賃周期的關(guān)系。4、(本題5分)某在線游戲公司擁有玩家的游戲時(shí)長(zhǎng)、游戲內(nèi)消費(fèi)、游戲等級(jí)等數(shù)據(jù)。分析玩家的留存率和消費(fèi)行為,改進(jìn)游戲設(shè)計(jì)和運(yùn)營(yíng)策略。5、(本題5分)一家物流公司的跨境電商物流業(yè)務(wù)記錄了運(yùn)輸數(shù)據(jù),包括商品類別、運(yùn)輸國(guó)家、運(yùn)輸方式、清關(guān)時(shí)效、物流成本等。研究不同商品類別和運(yùn)輸國(guó)家對(duì)運(yùn)輸方式選擇和清關(guān)時(shí)效的影響。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)教育行業(yè)正在積極探索利用數(shù)據(jù)分析提升教學(xué)效果。以某在線教育平臺(tái)為例,討論如何基于學(xué)生的學(xué)習(xí)行為數(shù)據(jù)進(jìn)行學(xué)習(xí)路徑推薦和個(gè)性化教學(xué),包括數(shù)據(jù)采集、學(xué)生畫(huà)像構(gòu)建、課程推薦算法,以及如何評(píng)估教學(xué)改進(jìn)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論