南京師范大學(xué)中北學(xué)院《計算與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
南京師范大學(xué)中北學(xué)院《計算與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
南京師范大學(xué)中北學(xué)院《計算與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
南京師范大學(xué)中北學(xué)院《計算與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
南京師范大學(xué)中北學(xué)院《計算與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁南京師范大學(xué)中北學(xué)院

《計算與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在自然語言處理領(lǐng)域,情感分析是一項(xiàng)重要的任務(wù)。假設(shè)要分析大量的在線商品評論,以確定消費(fèi)者對產(chǎn)品的態(tài)度是積極、消極還是中性。在進(jìn)行情感分析時,以下哪種方法可能不是最有效的?()A.基于詞典的方法,通過查找預(yù)定義的情感詞來判斷情感傾向B.利用深度學(xué)習(xí)模型,如循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),自動學(xué)習(xí)語言的特征和模式C.僅僅依靠人工閱讀和判斷,不使用任何自動化的技術(shù)D.結(jié)合詞向量和機(jī)器學(xué)習(xí)分類算法,如支持向量機(jī)(SVM)2、人工智能中的人工神經(jīng)網(wǎng)絡(luò)具有強(qiáng)大的學(xué)習(xí)能力。假設(shè)我們正在訓(xùn)練一個多層神經(jīng)網(wǎng)絡(luò)來預(yù)測股票價格的走勢。如果網(wǎng)絡(luò)的訓(xùn)練數(shù)據(jù)包含了過多的噪聲,會產(chǎn)生什么后果?()A.網(wǎng)絡(luò)的泛化能力增強(qiáng)B.網(wǎng)絡(luò)的訓(xùn)練速度加快C.網(wǎng)絡(luò)可能對新的數(shù)據(jù)預(yù)測不準(zhǔn)確D.網(wǎng)絡(luò)的結(jié)構(gòu)變得更加復(fù)雜3、人工智能中的預(yù)訓(xùn)練語言模型,如GPT-3,在自然語言處理任務(wù)中取得了顯著成果。假設(shè)要將預(yù)訓(xùn)練語言模型應(yīng)用于特定領(lǐng)域的文本分類任務(wù),以下關(guān)于預(yù)訓(xùn)練模型應(yīng)用的描述,正確的是:()A.可以直接使用預(yù)訓(xùn)練模型進(jìn)行分類,無需任何微調(diào)就能獲得良好的效果B.預(yù)訓(xùn)練模型的參數(shù)是固定的,不能根據(jù)新的任務(wù)和數(shù)據(jù)進(jìn)行調(diào)整C.在預(yù)訓(xùn)練模型的基礎(chǔ)上,使用特定領(lǐng)域的數(shù)據(jù)進(jìn)行微調(diào),可以提高在該領(lǐng)域任務(wù)中的性能D.預(yù)訓(xùn)練語言模型對計算資源要求不高,任何設(shè)備都能輕松應(yīng)用4、在人工智能的倫理原則中,“公平性”是一個重要的考量因素。假設(shè)一個人工智能招聘系統(tǒng)對不同性別、種族的候選人給出了不同的評價結(jié)果。以下關(guān)于解決這種公平性問題的方法,哪一項(xiàng)是不正確的?()A.對數(shù)據(jù)進(jìn)行預(yù)處理,消除可能導(dǎo)致偏差的因素B.定期審查和更新模型,以確保其公平性C.故意引入偏差,以平衡不同群體之間的差異D.建立公平性評估指標(biāo),對模型進(jìn)行監(jiān)測和改進(jìn)5、人工智能中的自動推理技術(shù)旨在讓計算機(jī)能夠自動進(jìn)行邏輯推理和證明。假設(shè)要開發(fā)一個能夠自動解決數(shù)學(xué)定理證明問題的系統(tǒng),以下關(guān)于自動推理的描述,正確的是:()A.現(xiàn)有的自動推理技術(shù)可以輕松解決所有復(fù)雜的數(shù)學(xué)定理證明問題B.自動推理系統(tǒng)只需要基于固定的推理規(guī)則,不需要學(xué)習(xí)和適應(yīng)新的推理模式C.結(jié)合機(jī)器學(xué)習(xí)和符號推理的方法,可以提高自動推理系統(tǒng)的能力和靈活性D.自動推理在人工智能中的應(yīng)用范圍非常有限,沒有實(shí)際價值6、人工智能中的遷移學(xué)習(xí)可以利用已有的預(yù)訓(xùn)練模型來加速新任務(wù)的學(xué)習(xí)。假設(shè)要將一個在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型遷移到醫(yī)學(xué)圖像分析任務(wù)中,以下關(guān)于遷移學(xué)習(xí)的步驟,哪一項(xiàng)是不準(zhǔn)確的?()A.凍結(jié)預(yù)訓(xùn)練模型的部分層,只訓(xùn)練特定任務(wù)相關(guān)的層B.直接在新的醫(yī)學(xué)圖像數(shù)據(jù)集上微調(diào)整個預(yù)訓(xùn)練模型C.對新的數(shù)據(jù)集進(jìn)行數(shù)據(jù)增強(qiáng),以增加數(shù)據(jù)的多樣性D.分析預(yù)訓(xùn)練模型和新任務(wù)之間的差異,選擇合適的遷移策略7、人工智能中的聯(lián)邦學(xué)習(xí)技術(shù)旨在保護(hù)數(shù)據(jù)隱私的同時實(shí)現(xiàn)模型訓(xùn)練。假設(shè)多個機(jī)構(gòu)想要聯(lián)合訓(xùn)練一個人工智能模型,同時保護(hù)各自的數(shù)據(jù)隱私,以下關(guān)于聯(lián)邦學(xué)習(xí)的描述,正確的是:()A.聯(lián)邦學(xué)習(xí)可以在不共享原始數(shù)據(jù)的情況下,直接合并各機(jī)構(gòu)的模型參數(shù)進(jìn)行訓(xùn)練B.聯(lián)邦學(xué)習(xí)過程中不存在通信開銷和安全風(fēng)險C.采用加密技術(shù)和模型參數(shù)交換的方式,聯(lián)邦學(xué)習(xí)能夠在保護(hù)數(shù)據(jù)隱私的前提下協(xié)同訓(xùn)練模型D.聯(lián)邦學(xué)習(xí)只適用于小規(guī)模的數(shù)據(jù)和簡單的模型,對于大規(guī)模和復(fù)雜的任務(wù)不適用8、人工智能在金融領(lǐng)域的應(yīng)用包括風(fēng)險評估、欺詐檢測等。假設(shè)一家銀行要利用人工智能進(jìn)行客戶信用評估。以下關(guān)于人工智能在金融領(lǐng)域應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.可以通過分析客戶的交易記錄、信用歷史等多維度數(shù)據(jù)來評估信用風(fēng)險B.人工智能模型能夠自適應(yīng)地學(xué)習(xí)和更新,以適應(yīng)不斷變化的金融市場環(huán)境C.人工智能的決策結(jié)果完全可靠,不需要人類專家的監(jiān)督和審核D.可以幫助金融機(jī)構(gòu)降低成本,提高風(fēng)險控制的準(zhǔn)確性和效率9、人工智能中的知識圖譜技術(shù)可以將實(shí)體、關(guān)系和屬性以圖的形式表示,為智能應(yīng)用提供豐富的語義信息。假設(shè)要構(gòu)建一個關(guān)于歷史事件的知識圖譜,需要整合大量的文本、圖像和音頻資料。以下哪種方法在知識抽取和融合方面最為關(guān)鍵?()A.自然語言處理技術(shù)B.圖像識別技術(shù)C.音頻處理技術(shù)D.以上技術(shù)綜合運(yùn)用10、深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類等任務(wù)中取得了顯著成果。假設(shè)要使用CNN對大量的動物圖片進(jìn)行分類。以下關(guān)于卷積神經(jīng)網(wǎng)絡(luò)的描述,哪一項(xiàng)是不正確的?()A.卷積層通過卷積操作提取圖像的局部特征B.池化層用于減少特征圖的尺寸,降低計算量,同時保留主要特征C.隨著網(wǎng)絡(luò)層數(shù)的增加,CNN的性能一定會不斷提高D.可以通過調(diào)整卷積核的大小、數(shù)量和網(wǎng)絡(luò)結(jié)構(gòu)來優(yōu)化CNN的性能11、在人工智能的模型訓(xùn)練中,超參數(shù)的調(diào)整是一個關(guān)鍵步驟。假設(shè)正在訓(xùn)練一個用于文本生成的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),以下關(guān)于超參數(shù)選擇的方法,哪一項(xiàng)是不太可取的?()A.基于經(jīng)驗(yàn)和直覺,隨機(jī)選擇一組超參數(shù)進(jìn)行試驗(yàn)B.使用網(wǎng)格搜索或隨機(jī)搜索等方法,系統(tǒng)地嘗試不同的超參數(shù)組合C.借鑒已有的相關(guān)研究和實(shí)踐中常用的超參數(shù)設(shè)置D.利用自動超參數(shù)調(diào)整工具,如Hyperopt,根據(jù)驗(yàn)證集的性能自動尋找最優(yōu)超參數(shù)12、在人工智能的情感計算中,需要從人的面部表情、語音語調(diào)、文字等多模態(tài)信息中識別情感。假設(shè)要綜合分析這些多模態(tài)信息來準(zhǔn)確判斷一個人的情感狀態(tài),以下哪種融合方式是有效的?()A.早期融合,在數(shù)據(jù)層面進(jìn)行整合B.晚期融合,在決策層面進(jìn)行整合C.不進(jìn)行融合,分別處理每個模態(tài)的信息D.隨機(jī)選擇一種模態(tài)的信息進(jìn)行分析13、在人工智能的研究中,強(qiáng)化學(xué)習(xí)被廣泛應(yīng)用于智能體的決策和優(yōu)化問題。假設(shè)一個智能機(jī)器人需要在復(fù)雜的環(huán)境中學(xué)習(xí)如何行走并避開障礙物,以最快的速度到達(dá)目標(biāo)位置。在這種情況下,以下哪種強(qiáng)化學(xué)習(xí)算法能夠使機(jī)器人更快地學(xué)習(xí)到有效的策略,同時具有較好的泛化能力?()A.Q-learningB.SARSAC.策略梯度算法D.蒙特卡羅方法14、在人工智能的研究中,模型的可解釋性是一個重要的問題。假設(shè)開發(fā)了一個用于預(yù)測股票價格的人工智能模型,但用戶對模型的決策過程和結(jié)果缺乏理解和信任。以下哪種方法能夠提高模型的可解釋性,讓用戶更好地理解模型是如何做出預(yù)測的?()A.繪制復(fù)雜的模型架構(gòu)圖B.提供特征重要性分析C.使用更多的隱藏層D.增加模型的參數(shù)數(shù)量15、當(dāng)利用人工智能技術(shù)進(jìn)行股票市場的預(yù)測時,需要綜合考慮多種因素,如公司財務(wù)數(shù)據(jù)、宏觀經(jīng)濟(jì)指標(biāo)、市場情緒等。在這種復(fù)雜的場景下,以下哪種人工智能方法可能具有較大的潛力?()A.基于規(guī)則的專家系統(tǒng)B.強(qiáng)化學(xué)習(xí)C.遺傳算法D.模糊邏輯16、在人工智能的模型部署階段,需要考慮許多實(shí)際問題。假設(shè)要將一個訓(xùn)練好的人工智能模型部署到移動設(shè)備上,以下關(guān)于模型壓縮和優(yōu)化的方法,哪一項(xiàng)是不正確的?()A.采用量化技術(shù),減少模型的參數(shù)精度B.進(jìn)行模型剪枝,去除不重要的連接和神經(jīng)元C.直接將訓(xùn)練好的模型原封不動地部署到移動設(shè)備上,不進(jìn)行任何優(yōu)化D.使用知識蒸餾技術(shù),將復(fù)雜模型的知識遷移到較小的模型中17、人工智能中的自動規(guī)劃和調(diào)度問題在許多領(lǐng)域都有應(yīng)用,如生產(chǎn)制造、物流配送等。假設(shè)一個工廠要安排生產(chǎn)任務(wù),需要考慮機(jī)器的可用性、訂單的優(yōu)先級和交貨日期等約束條件。以下哪種自動規(guī)劃算法在處理這種復(fù)雜的約束滿足問題上最為高效?()A.A*算法B.遺傳算法C.模擬退火算法D.蟻群算法18、在人工智能的研究領(lǐng)域中,自然語言處理是重要的一部分。假設(shè)我們要開發(fā)一個能夠自動回答用戶問題的智能客服系統(tǒng),需要對大量的文本數(shù)據(jù)進(jìn)行學(xué)習(xí)和分析。以下哪種技術(shù)在處理自然語言的語義理解方面可能發(fā)揮關(guān)鍵作用?()A.詞法分析B.句法分析C.語義網(wǎng)絡(luò)D.語音識別19、人工智能中的知識圖譜用于表示實(shí)體之間的關(guān)系和知識。假設(shè)一個知識圖譜被用于智能問答系統(tǒng),以下關(guān)于知識圖譜的描述,正確的是:()A.知識圖譜中的知識是固定不變的,不能進(jìn)行更新和擴(kuò)展B.知識圖譜能夠自動從大量文本中抽取知識,無需人工干預(yù)C.可以通過知識圖譜的推理功能發(fā)現(xiàn)隱藏的知識和關(guān)系D.知識圖譜只適用于特定領(lǐng)域的知識表示,通用性較差20、人工智能中的元學(xué)習(xí)技術(shù)旨在讓模型能夠快速適應(yīng)新的任務(wù)和數(shù)據(jù)分布。假設(shè)要開發(fā)一個能夠在不同領(lǐng)域的小樣本學(xué)習(xí)任務(wù)中表現(xiàn)良好的元學(xué)習(xí)模型,以下哪種元學(xué)習(xí)方法在泛化能力和學(xué)習(xí)效率方面具有更大的潛力?()A.基于模型的元學(xué)習(xí)B.基于優(yōu)化的元學(xué)習(xí)C.基于度量的元學(xué)習(xí)D.以上方法結(jié)合使用二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述人工智能中的倫理問題和挑戰(zhàn)。2、(本題5分)說明人工智能在音頻處理和音樂創(chuàng)作中的探索。3、(本題5分)說明人工智能在稅務(wù)規(guī)劃和合規(guī)中的應(yīng)用。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)研究一個利用人工智能進(jìn)行能源管理的系統(tǒng),如智能電網(wǎng)中的應(yīng)用,分析其如何優(yōu)化能源分配和降低消耗。2、(本題5分)分析某款智能寫作助手的功能和對寫作過程的幫助。3、(本題5分)分析一個基于人工智能的剪紙藝術(shù)設(shè)計系統(tǒng),探討其圖案創(chuàng)新和工藝指導(dǎo)功能。4、(本題5分)分析一個利用人工智能進(jìn)行電影劇本創(chuàng)作的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論