版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆上海市晉元中學(xué)高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線(,),以點()為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點,若,則的離心率為()A. B. C. D.2.函數(shù)fxA. B.C. D.3.已知拋物線:()的焦點為,為該拋物線上一點,以為圓心的圓與的準線相切于點,,則拋物線方程為()A. B. C. D.4.已知復(fù)數(shù)z1=3+4i,z2=a+i,且z1是實數(shù),則實數(shù)a等于()A. B. C.- D.-5.已知奇函數(shù)是上的減函數(shù),若滿足不等式組,則的最小值為()A.-4 B.-2 C.0 D.46.如圖所示,三國時代數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機拋擲500顆米粒(米粒大小忽略不計,?。?,則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.134 B.67 C.182 D.1087.已知集合,,則()A. B. C. D.8.如圖,在等腰梯形中,,,,為的中點,將與分別沿、向上折起,使、重合為點,則三棱錐的外接球的體積是()A. B.C. D.9.已知向量,夾角為,,,則()A.2 B.4 C. D.10.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.11.甲、乙、丙、丁四位同學(xué)高考之后計劃去三個不同社區(qū)進行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為()A.8 B.7 C.6 D.512.已知平面平面,且是正方形,在正方形內(nèi)部有一點,滿足與平面所成的角相等,則點的軌跡長度為()A. B.16 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角,,所對的邊分別邊,且,設(shè)角的角平分線交于點,則的值最小時,___.14.已知向量滿足,且,則_________.15.某部門全部員工參加一項社會公益活動,按年齡分為三組,其人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個容量為20的樣本,若組中甲、乙二人均被抽到的概率是,則該部門員工總?cè)藬?shù)為__________.16.若方程有兩個不等實根,則實數(shù)的取值范圍是_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),且曲線在處的切線方程為.(1)求的極值點與極值.(2)當(dāng),時,證明:.18.(12分)如圖所示,在三棱柱中,為等邊三角形,,,平面,是線段上靠近的三等分點.(1)求證:;(2)求直線與平面所成角的正弦值.19.(12分)如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現(xiàn)將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時,求二面角的余弦值.20.(12分)設(shè)橢圓的離心率為,圓與軸正半軸交于點,圓在點處的切線被橢圓截得的弦長為.(1)求橢圓的方程;(2)設(shè)圓上任意一點處的切線交橢圓于點,試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由.21.(12分)[選修4-5:不等式選講]設(shè)函數(shù).(1)求不等式的解集;(2)已知關(guān)于的不等式在上有解,求實數(shù)的取值范圍.22.(10分)已知函數(shù).(1)若是的極值點,求的極大值;(2)求實數(shù)的范圍,使得恒成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
求出雙曲線的一條漸近線方程,利用圓與雙曲線的一條漸近線交于兩點,且,則可根據(jù)圓心到漸近線距離為列出方程,求解離心率.【詳解】不妨設(shè)雙曲線的一條漸近線與圓交于,因為,所以圓心到的距離為:,即,因為,所以解得.故選A.【點睛】本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想以及計算能力,屬于中檔題.對于離心率求解問題,關(guān)鍵是建立關(guān)于的齊次方程,主要有兩個思考方向,一方面,可以從幾何的角度,結(jié)合曲線的幾何性質(zhì)以及題目中的幾何關(guān)系建立方程;另一方面,可以從代數(shù)的角度,結(jié)合曲線方程的性質(zhì)以及題目中的代數(shù)的關(guān)系建立方程.2、A【解析】
由f12=e-14>0排除選項D;【詳解】由f12=e-14>0,可排除選項D,f-1=-e【點睛】本題通過對多個圖象的選擇考查函數(shù)的圖象與性質(zhì),屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及x→03、C【解析】
根據(jù)拋物線方程求得點的坐標(biāo),根據(jù)軸、列方程,解方程求得的值.【詳解】不妨設(shè)在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準線相切于點,根據(jù)拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.4、A【解析】分析:計算,由z1,是實數(shù)得,從而得解.詳解:復(fù)數(shù)z1=3+4i,z2=a+i,.所以z1,是實數(shù),所以,即.故選A.點睛:本題主要考查了復(fù)數(shù)共軛的概念,屬于基礎(chǔ)題.5、B【解析】
根據(jù)函數(shù)的奇偶性和單調(diào)性得到可行域,畫出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【詳解】奇函數(shù)是上的減函數(shù),則,且,畫出可行域和目標(biāo)函數(shù),,即,表示直線與軸截距的相反數(shù),根據(jù)平移得到:當(dāng)直線過點,即時,有最小值為.故選:.【點睛】本題考查了函數(shù)的單調(diào)性和奇偶性,線性規(guī)劃問題,意在考查學(xué)生的綜合應(yīng)用能力,畫出圖像是解題的關(guān)鍵.6、B【解析】
根據(jù)幾何概型的概率公式求出對應(yīng)面積之比即可得到結(jié)論.【詳解】解:設(shè)大正方形的邊長為1,則小直角三角形的邊長為,
則小正方形的邊長為,小正方形的面積,
則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,
故選:B.【點睛】本題主要考查幾何概型的概率的應(yīng)用,求出對應(yīng)的面積之比是解決本題的關(guān)鍵.7、D【解析】
先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點睛】本題考查集合的交集運算,考查學(xué)生的基本運算能力,是一道容易題.8、A【解析】
由題意等腰梯形中的三個三角形都是等邊三角形,折疊成的三棱錐是正四面體,易求得其外接球半徑,得球體積.【詳解】由題意等腰梯形中,又,∴,是靠邊三角形,從而可得,∴折疊后三棱錐是棱長為1的正四面體,設(shè)是的中心,則平面,,,外接球球心必在高上,設(shè)外接球半徑為,即,∴,解得,球體積為.故選:A.【點睛】本題考查求球的體積,解題關(guān)鍵是由已知條件確定折疊成的三棱錐是正四面體.9、A【解析】
根據(jù)模長計算公式和數(shù)量積運算,即可容易求得結(jié)果.【詳解】由于,故選:A.【點睛】本題考查向量的數(shù)量積運算,模長的求解,屬綜合基礎(chǔ)題.10、D【解析】
根據(jù)題意畫出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當(dāng)且僅當(dāng)時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質(zhì)的簡單應(yīng)用,圓錐曲線與基本不等式綜合應(yīng)用,屬于中檔題.11、B【解析】根據(jù)題意滿足條件的安排為:A(甲,乙)B(丙)C(丁);A(甲,乙)B(?。〤(丙);A(甲,丙)B(?。〤(乙);A(甲,?。〣(丙)C(乙);A(甲)B(丙,?。〤(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.12、C【解析】
根據(jù)與平面所成的角相等,判斷出,建立平面直角坐標(biāo)系,求得點的軌跡方程,由此求得點的軌跡長度.【詳解】由于平面平面,且交線為,,所以平面,平面.所以和分別是直線與平面所成的角,所以,所以,即,所以.以為原點建立平面直角坐標(biāo)系如下圖所示,則,,設(shè)(點在第一象限內(nèi)),由得,即,化簡得,由于點在第一象限內(nèi),所以點的軌跡是以為圓心,半徑為的圓在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以點的軌跡長度為.故選:C【點睛】本小題主要考查線面角的概念和運用,考查動點軌跡方程的求法,考查空間想象能力和邏輯推理能力,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【詳解】因為,則,由余弦定理得:,當(dāng)且僅當(dāng)時取等號,又因為,,所以.故答案為:.【點睛】本題考查余弦定理和正弦定理的應(yīng)用,以及基本不等式求最值,考查計算能力.14、【解析】
由數(shù)量積的運算律求得,再由數(shù)量積的定義可得結(jié)論.【詳解】由題意,∴,即,∴.故答案為:.【點睛】本題考查求向量的夾角,掌握數(shù)量積的定義與運算律是解題關(guān)鍵.15、60【解析】
根據(jù)樣本容量及各組人數(shù)比,可求得C組中的人數(shù);由組中甲、乙二人均被抽到的概率是可求得C組的總?cè)藬?shù),即可由各組人數(shù)比求得總?cè)藬?shù).【詳解】三組人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個容量為20的樣本,則三組抽取人數(shù)分別.設(shè)組有人,則組中甲、乙二人均被抽到的概率,∴解得.∴該部門員工總共有人.故答案為:60.【點睛】本題考查了分層抽樣的定義與簡單應(yīng)用,古典概型概率的簡單應(yīng)用,由各層人數(shù)求總?cè)藬?shù)的應(yīng)用,屬于基礎(chǔ)題.16、【解析】
由知x>0,故.令,則.當(dāng)時,;當(dāng)時,.所以在(0,e)上遞增,在(e,+)上遞減.故,即.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極小值點為,極小值為,無極大值;(2)證明見解析【解析】
先對函數(shù)求導(dǎo),結(jié)合已知及導(dǎo)數(shù)的幾何意義可求,結(jié)合單調(diào)性即可求解函數(shù)的極值點及極值;令,問題可轉(zhuǎn)化為求解函數(shù)的最值,結(jié)合導(dǎo)數(shù)可求.【詳解】(1)由題得函數(shù)的定義域為.,由已知得,解得∴,令,得令,得,∴在上單調(diào)遞增.令,得∴在上單調(diào)遞減∴的極小值點為,極小值為,無極大值.(2)證明:由(1)知,∴,令,即∵,,∴恒成立.∴在上單調(diào)遞增又,∴在上恒成立∴在上恒成立∴,即∴【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值問題,考查利用導(dǎo)數(shù)證明不等式,意在考查學(xué)生對這些知識的理解掌握水平,屬于中檔題.18、(1)證明見解析(2)【解析】
(1)由,故,所以四邊形為菱形,再通過,證得,所以四邊形為正方形,得到.(2)根據(jù)(1)的論證,建立空間直角坐標(biāo),設(shè)平面的法向量為,由求得,再由,利用線面角的向量法公式求解.【詳解】(1)因為,故,所以四邊形為菱形,而平面,故.因為,故,故,即四邊形為正方形,故.(2)依題意,.在正方形中,,故以為原點,所在直線分別為、、軸,建立如圖所示的空間直角坐標(biāo)系;如圖所示:不紡設(shè),則,又因為,所以.所以.設(shè)平面的法向量為,則,即,令,則.于是.又因為,設(shè)直線與平面所成角為,則,所以直線與平面所成角的正弦值為.【點睛】本題考查空間線面的位置關(guān)系、線面成角,還考查空間想象能力以及數(shù)形結(jié)合思想,屬于中檔題.19、(1)見解析(2)【解析】
(1)利用面面垂直的性質(zhì)定理證得平面,由此證得,根據(jù)圓的幾何性質(zhì)證得,由此證得平面.(2)判斷出三棱錐的體積最大時點的位置.建立空間直角坐標(biāo)系,通過平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)證明:因為平面平面是正方形,所以平面.因為平面,所以.因為點在以為直徑的半圓弧上,所以.又,所以平面.(2)解:顯然,當(dāng)點位于的中點時,的面積最大,三棱錐的體積也最大.不妨設(shè),記中點為,以為原點,分別以的方向為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,設(shè)平面的法向量為,則令,得.設(shè)平面的法向量為,則令,得,所以.由圖可知,二面角為銳角,故二面角的余弦值為.【點睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(1);(2)見解析.【解析】
(I)結(jié)合離心率,得到a,b,c的關(guān)系,計算A的坐標(biāo),計算切線與橢圓交點坐標(biāo),代入橢圓方程,計算參數(shù),即可.(II)分切線斜率存在與不存在討論,設(shè)出M,N的坐標(biāo),設(shè)出切線方程,結(jié)合圓心到切線距離公式,得到m,k的關(guān)系式,將直線方程代入橢圓方程,利用根與系數(shù)關(guān)系,表示,結(jié)合三角形相似,證明結(jié)論,即可.【詳解】(Ⅰ)設(shè)橢圓的半焦距為,由橢圓的離心率為知,,∴橢圓的方程可設(shè)為.易求得,∴點在橢圓上,∴,解得,∴橢圓的方程為.(Ⅱ)當(dāng)過點且與圓相切的切線斜率不存在時,不妨設(shè)切線方程為,由(Ⅰ)知,,,∴.當(dāng)過點且與圓相切的切線斜率存在時,可設(shè)切線的方程為,,∴,即.聯(lián)立直線和橢圓的方程得,∴,得.∵,∴,,∴.綜上所述,圓上任意一點處的切線交橢圓于點,都有.在中,由與相似得,為定值.【點睛】本道題考查了橢圓方程的求解,考查了直線與橢圓位置關(guān)系,考查了向量的坐標(biāo)運算,難度偏難.21、(1)(2)【解析】
(1)零點分段去絕對值解不等式即可(2)由題在上有解,去絕對值分離變量a即可.【詳解】(1)不等式,即等價于或或解得,所以原不等式的解集為;(2)當(dāng)時,不等式,即,所以在上有解即在上有解,所以,.【點睛】本題考查絕對值不等式解法,不等式有解求參數(shù),熟記零點分段,熟練處
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 七年級上冊《金色花》課件
- 兩條直線的位置關(guān)系對稱問題課件
- 《服飾知識常識》課件
- 單位管理制度集合大全人員管理十篇
- 單位管理制度集粹選集人事管理十篇
- 《石膏的護理》課件
- 單位管理制度分享大合集員工管理篇
- 單位管理制度范文大合集職工管理篇十篇
- 單位管理制度范例匯編人員管理篇十篇
- 單位管理制度呈現(xiàn)匯編職員管理篇十篇
- GB 14102.1-2024防火卷簾第1部分:通用技術(shù)條件
- 2024年決戰(zhàn)行測5000題言語理解與表達一套
- DZ∕T 0272-2015 礦產(chǎn)資源綜合利用技術(shù)指標(biāo)及其計算方法(正式版)
- 生物入侵與生物安全智慧樹知到期末考試答案章節(jié)答案2024年浙江農(nóng)林大學(xué)
- 《公路工程集料試驗規(guī)程》JTG-3432-2024考核試題及答案文檔
- 2023醫(yī)院隔離技術(shù)標(biāo)準-新舊版對比
- 圍手術(shù)期高血糖的管理
- 常見的排序算法-冒泡排序 課件 2023-2024學(xué)年浙教版(2019)高中信息技術(shù)選修1
- 農(nóng)貿(mào)市場安全生產(chǎn)
- 醫(yī)院門急診高峰時段合理分流患者的應(yīng)急預(yù)案
- (高清版)TDT 1031.6-2011 土地復(fù)墾方案編制規(guī)程 第6部分:建設(shè)項目
評論
0/150
提交評論