版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
重慶市第十一中學(xué)2025屆高三一診考試數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)若關(guān)于的方程有六個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.2.已知、,,則下列是等式成立的必要不充分條件的是()A. B.C. D.3.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.4.已知函數(shù),,若方程恰有三個(gè)不相等的實(shí)根,則的取值范圍為()A. B.C. D.5.甲在微信群中發(fā)了一個(gè)6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則乙獲得“最佳手氣”(即乙領(lǐng)到的錢(qián)數(shù)多于其他任何人)的概率是()A. B. C. D.6.關(guān)于函數(shù)在區(qū)間的單調(diào)性,下列敘述正確的是()A.單調(diào)遞增 B.單調(diào)遞減 C.先遞減后遞增 D.先遞增后遞減7.已知橢圓的左、右焦點(diǎn)分別為、,過(guò)的直線交橢圓于A,B兩點(diǎn),交y軸于點(diǎn)M,若、M是線段AB的三等分點(diǎn),則橢圓的離心率為()A. B. C. D.8.如圖所示程序框圖,若判斷框內(nèi)為“”,則輸出()A.2 B.10 C.34 D.989.為了貫徹落實(shí)黨中央精準(zhǔn)扶貧決策,某市將其低收入家庭的基本情況經(jīng)過(guò)統(tǒng)計(jì)繪制如圖,其中各項(xiàng)統(tǒng)計(jì)不重復(fù).若該市老年低收入家庭共有900戶(hù),則下列說(shuō)法錯(cuò)誤的是()A.該市總有15000戶(hù)低收入家庭B.在該市從業(yè)人員中,低收入家庭共有1800戶(hù)C.在該市無(wú)業(yè)人員中,低收入家庭有4350戶(hù)D.在該市大于18歲在讀學(xué)生中,低收入家庭有800戶(hù)10.在三棱錐中,,且分別是棱,的中點(diǎn),下面四個(gè)結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號(hào)是()A.①②③ B.②③④ C.①④ D.①②④11.已知集合,集合,若,則()A. B. C. D.12.已知傾斜角為的直線與直線垂直,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)如圖是一個(gè)算法的流程圖,若輸出的值是,則輸入的值為_(kāi)___________.14.已知橢圓:的左、右焦點(diǎn)分別為,,如圖是過(guò)且垂直于長(zhǎng)軸的弦,則的內(nèi)切圓方程是________.15.內(nèi)角,,的對(duì)邊分別為,,,若,則__________.16.在的展開(kāi)式中的系數(shù)為,則_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),判斷在上的單調(diào)性并加以證明;(2)若,,求的取值范圍.18.(12分)已知函數(shù),不等式的解集為.(1)求實(shí)數(shù),的值;(2)若,,,求證:.19.(12分)已知函數(shù).(1)當(dāng)時(shí),不等式恒成立,求的最小值;(2)設(shè)數(shù)列,其前項(xiàng)和為,證明:.20.(12分)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大?。唬?)若△ABC外接圓的半徑為,求△ABC面積的最大值.21.(12分)設(shè)為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在橢圓:上,該橢圓的左頂點(diǎn)到直線的距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若橢圓外一點(diǎn)滿(mǎn)足,平行于軸,,動(dòng)點(diǎn)在直線上,滿(mǎn)足.設(shè)過(guò)點(diǎn)且垂直的直線,試問(wèn)直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)寫(xiě)出該定點(diǎn),若不過(guò)定點(diǎn)請(qǐng)說(shuō)明理由.22.(10分)已知函數(shù),.(1)若不等式對(duì)恒成立,求的最小值;(2)證明:.(3)設(shè)方程的實(shí)根為.令若存在,,,使得,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
令,則,由圖象分析可知在上有兩個(gè)不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個(gè)不同交點(diǎn),要使關(guān)于的方程有六個(gè)不相等的實(shí)數(shù)根,則有兩個(gè)不同的根,設(shè)由根的分布可知,,解得.故選:B.【點(diǎn)睛】本題考查復(fù)合方程根的個(gè)數(shù)問(wèn)題,涉及到一元二次方程根的分布,考查學(xué)生轉(zhuǎn)化與化歸和數(shù)形結(jié)合的思想,是一道中檔題.2、D【解析】
構(gòu)造函數(shù),,利用導(dǎo)數(shù)分析出這兩個(gè)函數(shù)在區(qū)間上均為減函數(shù),由得出,分、、三種情況討論,利用放縮法結(jié)合函數(shù)的單調(diào)性推導(dǎo)出或,再利用余弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】構(gòu)造函數(shù),,則,,所以,函數(shù)、在區(qū)間上均為減函數(shù),當(dāng)時(shí),則,;當(dāng)時(shí),,.由得.①若,則,即,不合乎題意;②若,則,則,此時(shí),,由于函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,則,;③若,則,則,此時(shí),由于函數(shù)在區(qū)間上單調(diào)遞減,函數(shù)在區(qū)間上單調(diào)遞增,則,.綜上所述,.故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的應(yīng)用,構(gòu)造新函數(shù)是解本題的關(guān)鍵,解題時(shí)要注意對(duì)的取值范圍進(jìn)行分類(lèi)討論,考查推理能力,屬于中等題.3、B【解析】
先判斷命題的真假,進(jìn)而根據(jù)復(fù)合命題真假的真值表,即可得答案.【詳解】,,因?yàn)?,,所以,所以,即命題p為真命題;畫(huà)出函數(shù)和圖象,知命題q為假命題,所以為真.故選:B.【點(diǎn)睛】本題考查真假命題的概念,以及真值表的應(yīng)用,解題的關(guān)鍵是判斷出命題的真假,難度較易.4、B【解析】
由題意可將方程轉(zhuǎn)化為,令,,進(jìn)而將方程轉(zhuǎn)化為,即或,再利用的單調(diào)性與最值即可得到結(jié)論.【詳解】由題意知方程在上恰有三個(gè)不相等的實(shí)根,即,①.因?yàn)椋偈絻蛇呁?,?所以方程有三個(gè)不等的正實(shí)根.記,,則上述方程轉(zhuǎn)化為.即,所以或.因?yàn)?,?dāng)時(shí),,所以在,上單調(diào)遞增,且時(shí),.當(dāng)時(shí),,在上單調(diào)遞減,且時(shí),.所以當(dāng)時(shí),取最大值,當(dāng),有一根.所以恰有兩個(gè)不相等的實(shí)根,所以.故選:B.【點(diǎn)睛】本題考查了函數(shù)與方程的關(guān)系,考查函數(shù)的單調(diào)性與最值,轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.5、B【解析】
將所有可能的情況全部枚舉出來(lái),再根據(jù)古典概型的方法求解即可.【詳解】設(shè)乙,丙,丁分別領(lǐng)到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個(gè),其中符合乙獲得“最佳手氣”的有3個(gè),故所求概率為,故選:B.【點(diǎn)睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎(chǔ)題型.6、C【解析】
先用誘導(dǎo)公式得,再根據(jù)函數(shù)圖像平移的方法求解即可.【詳解】函數(shù)的圖象可由向左平移個(gè)單位得到,如圖所示,在上先遞減后遞增.故選:C【點(diǎn)睛】本題考查三角函數(shù)的平移與單調(diào)性的求解.屬于基礎(chǔ)題.7、D【解析】
根據(jù)題意,求得的坐標(biāo),根據(jù)點(diǎn)在橢圓上,點(diǎn)的坐標(biāo)滿(mǎn)足橢圓方程,即可求得結(jié)果.【詳解】由已知可知,點(diǎn)為中點(diǎn),為中點(diǎn),故可得,故可得;代入橢圓方程可得,解得,不妨取,故可得點(diǎn)的坐標(biāo)為,則,易知點(diǎn)坐標(biāo),將點(diǎn)坐標(biāo)代入橢圓方程得,所以離心率為,故選:D.【點(diǎn)睛】本題考查橢圓離心率的求解,難點(diǎn)在于根據(jù)題意求得點(diǎn)的坐標(biāo),屬中檔題.8、C【解析】
由題意,逐步分析循環(huán)中各變量的值的變化情況,即可得解.【詳解】由題意運(yùn)行程序可得:,,,;,,,;,,,;不成立,此時(shí)輸出.故選:C.【點(diǎn)睛】本題考查了程序框圖,只需在理解程序框圖的前提下細(xì)心計(jì)算即可,屬于基礎(chǔ)題.9、D【解析】
根據(jù)給出的統(tǒng)計(jì)圖表,對(duì)選項(xiàng)進(jìn)行逐一判斷,即可得到正確答案.【詳解】解:由題意知,該市老年低收入家庭共有900戶(hù),所占比例為6%,則該市總有低收入家庭900÷6%=15000(戶(hù)),A正確,該市從業(yè)人員中,低收入家庭共有15000×12%=1800(戶(hù)),B正確,該市無(wú)業(yè)人員中,低收入家庭有15000×29%%=4350(戶(hù)),C正確,該市大于18歲在讀學(xué)生中,低收入家庭有15000×4%=600(戶(hù)),D錯(cuò)誤.故選:D.【點(diǎn)睛】本題主要考查對(duì)統(tǒng)計(jì)圖表的認(rèn)識(shí)和分析,這類(lèi)題要認(rèn)真分析圖表的內(nèi)容,讀懂圖表反映出的信息是解題的關(guān)鍵,屬于基礎(chǔ)題.10、D【解析】
①通過(guò)證明平面,證得;②通過(guò)證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設(shè)的中點(diǎn)為,連接,則,,又,所以平面,所以,故①正確;因?yàn)?,所以平面,故②正確;當(dāng)平面與平面垂直時(shí),最大,最大值為,故③錯(cuò)誤;若與垂直,又因?yàn)?,所以平面,所以,又,所以平面,所以,因?yàn)?,所以顯然與不可能垂直,故④正確.故選:D【點(diǎn)睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.11、A【解析】
根據(jù)或,驗(yàn)證交集后求得的值.【詳解】因?yàn)?,所以?當(dāng)時(shí),,不符合題意,當(dāng)時(shí),.故選A.【點(diǎn)睛】本小題主要考查集合的交集概念及運(yùn)算,屬于基礎(chǔ)題.12、D【解析】
傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關(guān)系,同角三角函數(shù)基本關(guān)系式即可得出結(jié)果.【詳解】解:因?yàn)橹本€與直線垂直,所以,.又為直線傾斜角,解得.故選:D.【點(diǎn)睛】本題考查了相互垂直的直線斜率之間的關(guān)系,同角三角函數(shù)基本關(guān)系式,考查計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】
依題意,當(dāng)時(shí),由,即,解得;當(dāng)時(shí),由,解得或(舍去).綜上,得或.14、【解析】
利用公式計(jì)算出,其中為的周長(zhǎng),為內(nèi)切圓半徑,再利用圓心到直線AB的距離等于半徑可得到圓心坐標(biāo).【詳解】由已知,,,,設(shè)內(nèi)切圓的圓心為,半徑為,則,故有,解得,由,或(舍),所以的內(nèi)切圓方程為.故答案為:.【點(diǎn)睛】本題考查橢圓中三角形內(nèi)切圓的方程問(wèn)題,涉及到橢圓焦點(diǎn)三角形、橢圓的定義等知識(shí),考查學(xué)生的運(yùn)算能力,是一道中檔題.15、【解析】∵,∴,即,∴,∴.16、2【解析】
首先求出的展開(kāi)項(xiàng)中的系數(shù),然后根據(jù)系數(shù)為即可求出的取值.【詳解】由題知,當(dāng)時(shí)有,解得.故答案為:.【點(diǎn)睛】本題主要考查了二項(xiàng)式展開(kāi)項(xiàng)的系數(shù),屬于簡(jiǎn)單題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)在為增函數(shù);證明見(jiàn)解析(2)【解析】
(1)令,求出,可推得,故在為增函數(shù);(2)令,則,由此利用分類(lèi)討論思想和導(dǎo)數(shù)性質(zhì)求出實(shí)數(shù)的取值范圍.【詳解】(1)當(dāng)時(shí),.記,則,當(dāng)時(shí),,.所以,所以在單調(diào)遞增,所以.因?yàn)?,所以,所以在為增函?shù).(2)由題意,得,記,則,令,則,當(dāng)時(shí),,,所以,所以在為增函數(shù),即在單調(diào)遞增,所以.①當(dāng),,恒成立,所以為增函數(shù),即在單調(diào)遞增,又,所以,所以在為增函數(shù),所以所以滿(mǎn)足題意.②當(dāng),,令,,因?yàn)?,所以,故在單調(diào)遞增,故,即.故,又在單調(diào)遞增,由零點(diǎn)存在性定理知,存在唯一實(shí)數(shù),,當(dāng)時(shí),,單調(diào)遞減,即單調(diào)遞減,所以,此時(shí)在為減函數(shù),所以,不合題意,應(yīng)舍去.綜上所述,的取值范圍是.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的綜合應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值和零點(diǎn)及不等式恒成立等問(wèn)題,考查化歸與轉(zhuǎn)化思想、分類(lèi)與整合思想、函數(shù)與方程思想,考查了學(xué)生的邏輯推理和運(yùn)算求解能力,屬于難題.18、(1),.(2)見(jiàn)解析【解析】
(1)分三種情況討論即可(2)將,的值代入,然后利用均值定理即可.【詳解】解:(1)不等式可化為.即有或或.解得,或或.所以不等式的解集為,故,.(2)由(1)知,,即,由,得,,當(dāng)且僅當(dāng),即,時(shí)等號(hào)成立.故,即.【點(diǎn)睛】考查絕對(duì)值不等式的解法以及用均值定理證明不等式,中檔題.19、(1);(2)證明見(jiàn)解析.【解析】
(1),分,,三種情況推理即可;(2)由(1)可得,即,利用累加法即可得到證明.【詳解】(1)由,得.當(dāng)時(shí),方程的,因此在區(qū)間上恒為負(fù)數(shù).所以時(shí),,函數(shù)在區(qū)間上單調(diào)遞減.又,所以函數(shù)在區(qū)間上恒成立;當(dāng)時(shí),方程有兩個(gè)不等實(shí)根,且滿(mǎn)足,所以函數(shù)的導(dǎo)函數(shù)在區(qū)間上大于零,函數(shù)在區(qū)間上單增,又,所以函數(shù)在區(qū)間上恒大于零,不滿(mǎn)足題意;當(dāng)時(shí),在區(qū)間上,函數(shù)在區(qū)間上恒為正數(shù),所以在區(qū)間上恒為正數(shù),不滿(mǎn)足題意;綜上可知:若時(shí),不等式恒成立,的最小值為.(2)由第(1)知:若時(shí),.若,則,即成立.將換成,得成立,即,以此類(lèi)推,得,,上述各式相加,得,又,所以.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)恒成立問(wèn)題、證明數(shù)列不等式問(wèn)題,考查學(xué)生的邏輯推理能力以及數(shù)學(xué)計(jì)算能力,是一道難題.20、(1)B(2)【解析】
(1)由已知結(jié)合余弦定理,正弦定理及和兩角和的正弦公式進(jìn)行化簡(jiǎn)可求cosB,進(jìn)而可求B;(2)由已知結(jié)合正弦定理,余弦定理及基本不等式即可求解ac的范圍,然后結(jié)合三角形的面積公式即可求解.【詳解】(1)因?yàn)閎(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因?yàn)?,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因?yàn)閍2+c2≥2ac,所以4=a2+c2﹣ac≥ac,當(dāng)且僅當(dāng)a=c時(shí)取等號(hào),即ac的最大值4,所以△ABC面積S即面積的最大值.【點(diǎn)睛】本題綜合考查了正弦定理,余弦定理及三角形的面積公式在求解三角形中的應(yīng)用,屬于中檔題.21、(1);(2)見(jiàn)解析【解析】
(1)根據(jù)點(diǎn)到直線的距離公式可求出a的值,即可得橢圓方程;(2)由題意M(x0,y0),N(x0,y1),P(2,t),根據(jù),可得y1=2y0,由,可得2x0+2y0t=6,再根據(jù)向量的運(yùn)算可得,即可證明.【詳解】(1)左頂點(diǎn)A的坐標(biāo)為(﹣a,0),∵=,∴|a﹣5|=3,解得a=2或a=8(舍去),∴橢圓C的標(biāo)準(zhǔn)方程為+y2=1,(2)由題意M(x0,y0),N(x0,y1),P(2,t),則依題意可知y1≠y0,得(x0﹣2x0,y1﹣2y0)(0,y1﹣y0)=0,整理可得y1=2y0,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021年安徽省巢湖市公開(kāi)招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2022年甘肅省蘭州市公開(kāi)招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024年云南省昭通市公開(kāi)招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024年湖南省懷化市公開(kāi)招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2022年廣西壯族自治區(qū)崇左市公開(kāi)招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 淮北市和淮南市2025屆高三第一次質(zhì)量檢測(cè)(一模)生物試卷(含答案解析)
- 小學(xué)生學(xué)習(xí)之星事跡材料
- 河北省秦皇島市(2024年-2025年小學(xué)六年級(jí)語(yǔ)文)統(tǒng)編版競(jìng)賽題(上學(xué)期)試卷及答案
- 2025年激光治療機(jī)項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告
- 廣東省潮州市(2024年-2025年小學(xué)六年級(jí)語(yǔ)文)統(tǒng)編版開(kāi)學(xué)考試((上下)學(xué)期)試卷及答案
- 2024年恩施州直事業(yè)單位選聘36人歷年(高頻重點(diǎn)提升專(zhuān)題訓(xùn)練)共500題附帶答案詳解
- 電路分析(中國(guó)石油大學(xué)(華東))智慧樹(shù)知到期末考試答案章節(jié)答案2024年中國(guó)石油大學(xué)(華東)
- 2023-2024學(xué)年湖北省黃石市黃石港區(qū)八年級(jí)(上)期末數(shù)學(xué)試卷(含解析)
- 上海市楊浦區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末考試語(yǔ)文試題(解析版)
- 衛(wèi)生事業(yè)管理考試題庫(kù)2022
- 廣東省課程思政示范高職院校申報(bào)書(shū)
- 腦梗塞老人的營(yíng)養(yǎng)護(hù)理措施
- 電動(dòng)汽車(chē)膠粘劑市場(chǎng)洞察報(bào)告
- 不銹鋼樓梯扶手安裝合同
- 開(kāi)荒保潔物業(yè)管理開(kāi)荒保潔服務(wù)實(shí)施方案
- GA/T 2015-2023芬太尼類(lèi)藥物專(zhuān)用智能柜通用技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論