版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省衡水市桃城區(qū)武邑中學2025屆高三第三次模擬考試數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左、右焦點分別為,過作一條直線與雙曲線右支交于兩點,坐標原點為,若,則該雙曲線的離心率為()A. B. C. D.2.已知雙曲線的兩條漸近線與拋物線的準線分別交于點、,O為坐標原點.若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.33.在復平面內,復數(,)對應向量(O為坐標原點),設,以射線Ox為始邊,OZ為終邊旋轉的角為,則,法國數學家棣莫弗發(fā)現了棣莫弗定理:,,則,由棣莫弗定理可以導出復數乘方公式:,已知,則()A. B.4 C. D.164.已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布,從中隨機取一件,其長度誤差落在區(qū)間(3,6)內的概率為()(附:若隨機變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%5.已知函數,若,則的最小值為()參考數據:A. B. C. D.6.已知是函數圖象上的一點,過作圓的兩條切線,切點分別為,則的最小值為()A. B. C.0 D.7.已知,則“直線與直線垂直”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.執(zhí)行如圖所示的程序框圖,若輸出的結果為11,則圖中的判斷條件可以為()A. B. C. D.9.在展開式中的常數項為A.1 B.2 C.3 D.710.已知函數,則()A.1 B.2 C.3 D.411.將函數的圖象先向右平移個單位長度,在把所得函數圖象的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得到函數的圖象,若函數在上沒有零點,則的取值范圍是()A. B.C. D.12.函數且的圖象是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數f(x)=axlnx﹣bx(a,b∈R)在點(e,f(e))處的切線方程為y=3x﹣e,則a+b=_____.14.由于受到網絡電商的沖擊,某品牌的洗衣機在線下的銷售受到影響,承受了一定的經濟損失,現將地區(qū)200家實體店該品牌洗衣機的月經濟損失統(tǒng)計如圖所示,估算月經濟損失的平均數為,中位數為n,則_________.15.若正實數x,y,滿足x+2y=5,則x216.在一底面半徑和高都是的圓柱形容器中盛滿小麥,有一粒帶麥銹病的種子混入了其中.現從中隨機取出的種子,則取出了帶麥銹病種子的概率是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)求函數的最大值.18.(12分)在直角坐標系中,曲線的參數方程為(為參數),坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若曲線、交于、兩點,是曲線上的動點,求面積的最大值.19.(12分)本小題滿分14分)已知曲線的極坐標方程為,以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,直線的參數方程為(為參數),求直線被曲線截得的線段的長度20.(12分)選修4-4:坐標系與參數方程在平面直角坐標系xOy中,已知曲線C的參數方程為(α為參數).以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為,點P為曲線C上的動點,求點P到直線l距離的最大值.21.(12分)已知函數.(1)時,求不等式解集;(2)若的解集包含于,求a的取值范圍.22.(10分)如圖,設橢圓:,長軸的右端點與拋物線:的焦點重合,且橢圓的離心率是.(Ⅰ)求橢圓的標準方程;(Ⅱ)過作直線交拋物線于,兩點,過且與直線垂直的直線交橢圓于另一點,求面積的最小值,以及取到最小值時直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題可知,,再結合雙曲線第一定義,可得,對有,即,解得,再對,由勾股定理可得,化簡即可求解【詳解】如圖,因為,所以.因為所以.在中,,即,得,則.在中,由得.故選:B【點睛】本題考查雙曲線的離心率求法,幾何性質的應用,屬于中檔題2、C【解析】試題分析:拋物線的準線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點,,,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準線方程;3、D【解析】
根據復數乘方公式:,直接求解即可.【詳解】,.故選:D【點睛】本題考查了復數的新定義題目、同時考查了復數模的求法,解題的關鍵是理解棣莫弗定理,將復數化為棣莫弗定理形式,屬于基礎題.4、B【解析】試題分析:由題意故選B.考點:正態(tài)分布5、A【解析】
首先的單調性,由此判斷出,由求得的關系式.利用導數求得的最小值,由此求得的最小值.【詳解】由于函數,所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構造函數,.構造函數,,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A【點睛】本小題主要考查利用導數研究函數的最值,考查分段函數的圖像與性質,考查化歸與轉化的數學思想方法,屬于難題.6、C【解析】
先畫出函數圖像和圓,可知,若設,則,所以,而要求的最小值,只要取得最大值,若設圓的圓心為,則,所以只要取得最小值,若設,則,然后構造函數,利用導數求其最小值即可.【詳解】記圓的圓心為,設,則,設,記,則,令,因為在上單調遞增,且,所以當時,;當時,,則在上單調遞減,在上單調遞增,所以,即,所以(當時等號成立).故選:C【點睛】此題考查的是兩個向量的數量積的最小值,利用了導數求解,考查了轉化思想和運算能力,屬于難題.7、B【解析】
由兩直線垂直求得則或,再根據充要條件的判定方法,即可求解.【詳解】由題意,“直線與直線垂直”則,解得或,所以“直線與直線垂直”是“”的必要不充分條件,故選B.【點睛】本題主要考查了兩直線的位置關系,及必要不充分條件的判定,其中解答中利用兩直線的位置關系求得的值,同時熟記充要條件的判定方法是解答的關鍵,著重考查了推理與論證能力,屬于基礎題.8、B【解析】
根據程序框圖知當時,循環(huán)終止,此時,即可得答案.【詳解】,.運行第一次,,不成立,運行第二次,,不成立,運行第三次,,不成立,運行第四次,,不成立,運行第五次,,成立,輸出i的值為11,結束.故選:B.【點睛】本題考查補充程序框圖判斷框的條件,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意模擬程序一步一步執(zhí)行的求解策略.9、D【解析】
求出展開項中的常數項及含的項,問題得解。【詳解】展開項中的常數項及含的項分別為:,,所以展開式中的常數項為:.故選:D【點睛】本題主要考查了二項式定理中展開式的通項公式及轉化思想,考查計算能力,屬于基礎題。10、C【解析】
結合分段函數的解析式,先求出,進而可求出.【詳解】由題意可得,則.故選:C.【點睛】本題考查了求函數的值,考查了分段函數的性質,考查運算求解能力,屬于基礎題.11、A【解析】
根據y=Acos(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,根據定義域求出的范圍,再利用余弦函數的圖象和性質,求得ω的取值范圍.【詳解】函數的圖象先向右平移個單位長度,可得的圖象,再將圖象上每個點的橫坐標變?yōu)樵瓉淼谋?縱坐標不變),得到函數的圖象,∴周期,若函數在上沒有零點,∴,∴,,解得,又,解得,當k=0時,解,當k=-1時,,可得,.故答案為:A.【點睛】本題考查函數y=Acos(ωx+φ)的圖象變換及零點問題,此類問題通常采用數形結合思想,構建不等關系式,求解可得,屬于較難題.12、B【解析】
先判斷函數的奇偶性,再取特殊值,利用零點存在性定理判斷函數零點分布情況,即可得解.【詳解】由題可知定義域為,,是偶函數,關于軸對稱,排除C,D.又,,在必有零點,排除A.故選:B.【點睛】本題考查了函數圖象的判斷,考查了函數的性質,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、0【解析】
由題意,列方程組可求,即求.【詳解】∵在點處的切線方程為,,代入得①.又②.聯立①②解得:..故答案為:0.【點睛】本題考查導數的幾何意義,屬于基礎題.14、360【解析】
先計算第一塊小矩形的面積,第二塊小矩形的面積,,面積和超過0.5,所以中位數在第二塊求解,然后再求得平均數作差即可.【詳解】第一塊小矩形的面積,第二塊小矩形的面積,故;而,故.故答案為:360.【點睛】本題考查頻率分布直方圖、樣本的數字特征,考查運算求解能力以及數形結合思想,屬于基礎題.15、8【解析】
分析:將題中的式子進行整理,將x+1當做一個整體,之后應用已知兩個正數的整式形式和為定值,求分式形式和的最值的問題的求解方法,即可求得結果.詳解:x2-3x+1+2點睛:該題屬于應用基本不等式求最值的問題,解決該題的關鍵是需要對式子進行化簡,轉化,利用整體思維,最后注意此類問題的求解方法-------相乘,即可得結果.16、【解析】
求解占圓柱形容器的的總容積的比例求解即可.【詳解】解:由題意可得:取出了帶麥銹病種子的概率.故答案為:.【點睛】本題主要考查了體積類的幾何概型問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】
試題分析:由柯西不等式得試題解析:因為,所以.等號當且僅當,即時成立.所以的最大值為.考點:柯西不等式求最值18、(1),;(2).【解析】
(1)在曲線的參數方程中消去參數,可得出曲線的普通方程,將曲線的極坐標方程變形為,進而可得出曲線的直角坐標方程;(2)求出點到直線的最大距離,以及直線截圓所得弦長,利用三角形的面積公式可求得面積的最大值.【詳解】(1)由曲線的參數方程得,.所以,曲線的普通方程為,將曲線的極坐標方程變形為,所以,曲線的直角坐標方程為;(2)曲線是圓心為,半徑為為圓,圓心到直線的距離為,所以,點到直線的最大距離為,,因此,的面積為最大值為.【點睛】本題考查曲線的參數方程、極坐標方程與普通方程之間的相互轉換,同時也考查了直線截圓所形成的三角形面積最值的計算,考查計算能力,屬于中等題.19、【解析】解:解:將曲線的極坐標方程化為直角坐標方程為,即,它表示以為圓心,2為半徑圓,………4分直線方程的普通方程為,………8分圓C的圓心到直線l的距離,……………10分故直線被曲線截得的線段長度為.……………14分20、(1),(2)【解析】
試題分析:利用將極坐標方程化為直角坐標方程:化簡為ρcosθ+ρsinθ=1,即為x+y=1.再利用點到直線距離公式得:設點P的坐標為(2cosα,sinα),得P到直線l的距離試題解析:解:化簡為ρcosθ+ρsinθ=1,則直線l的直角坐標方程為x+y=1.設點P的坐標為(2cosα,sinα),得P到直線l的距離,dmax=.考點:極坐標方程化為直角坐標方程,點到直線距離公式21、(1)(2)【解析】
(1)代入可得對分類討論即可得不等式的解集;(2)根據不等式在上恒成立去絕對值化簡可得再去絕對值即可得關于的不等式組解不等式組即可求得的取值范圍【詳解】(1)當時,不等式可化為,①當時,不等式為,解得;②當時,不等式為,無解;③當時,不等式為,解得,綜上,原不等式的解集為.(2)因為的解集包含于,則不等式可化為,即.解得,由題意知,解得,所以實數a的取值范圍是.【點睛】本題考查了絕對值不等式的解法分類討論解絕對值不等式的應用,含參數不等式的解法.難度一般.22、(Ⅰ);(Ⅱ)面積的最小值為9,.【解析】
(Ⅰ)由已知求出拋物線的焦點坐標即得橢圓中的,再由離心率可求得,從而得值,得標準方程;(Ⅱ)設直線方程為,設,把直線方程代入
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 游泳行業(yè)游泳技巧培訓總結
- 零食店服務員工作技巧
- 時尚店銷售員的工作總結
- 快遞行業(yè)派送專員培訓總結
- 《瑜伽與健康》課件
- 《卒中優(yōu)化治療》課件
- 2023年江蘇省宿遷市公開招聘警務輔助人員輔警筆試自考題2卷含答案
- 2022年青海省西寧市公開招聘警務輔助人員輔警筆試自考題2卷含答案
- 2021年江蘇省鹽城市公開招聘警務輔助人員輔警筆試自考題1卷含答案
- 2021年河北省石家莊市公開招聘警務輔助人員輔警筆試自考題1卷含答案
- 西安信息職業(yè)大學《工程管理導論》2023-2024學年第一學期期末試卷
- CNC技理考(含答案)
- 電氣領域知識培訓課件
- 金融產品分類介紹
- 小收納大世界-整li與收納(黑龍江幼兒師范高等??茖W校)知到智慧樹答案
- 2024-2025學年上學期深圳初中語文七年級期末模擬卷2
- 河南省鄭州市2024-2025學年高一數學上學期期末考試試題含解析
- BOSS GT-6效果處理器中文說明書
- 2024廣東煙草專賣局校園招聘筆試管理單位遴選500模擬題附帶答案詳解
- 孕產婦高危五色管理(醫(yī)學講座培訓課件)
- 幼兒體適能培訓
評論
0/150
提交評論