陜西服裝工程學(xué)院《機(jī)器學(xué)習(xí)算法與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
陜西服裝工程學(xué)院《機(jī)器學(xué)習(xí)算法與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
陜西服裝工程學(xué)院《機(jī)器學(xué)習(xí)算法與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
陜西服裝工程學(xué)院《機(jī)器學(xué)習(xí)算法與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記。…………密………………封………………線…………第1頁(yè),共1頁(yè)陜西服裝工程學(xué)院

《機(jī)器學(xué)習(xí)算法與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在一個(gè)圖像分類任務(wù)中,如果需要快速進(jìn)行模型的訓(xùn)練和預(yù)測(cè),以下哪種輕量級(jí)模型架構(gòu)可能比較適合?()A.MobileNetB.ResNetC.InceptionD.VGG2、在一個(gè)回歸問(wèn)題中,如果數(shù)據(jù)存在非線性關(guān)系并且噪聲較大,以下哪種模型可能更適合?()A.多項(xiàng)式回歸B.高斯過(guò)程回歸C.嶺回歸D.Lasso回歸3、在構(gòu)建一個(gè)機(jī)器學(xué)習(xí)模型時(shí),我們通常需要對(duì)數(shù)據(jù)進(jìn)行預(yù)處理。假設(shè)我們有一個(gè)包含大量缺失值的數(shù)據(jù)集,以下哪種處理缺失值的方法是較為合理的()A.直接刪除包含缺失值的樣本B.用平均值填充缺失值C.用隨機(jī)值填充缺失值D.不處理缺失值,直接使用原始數(shù)據(jù)4、考慮一個(gè)回歸問(wèn)題,我們要預(yù)測(cè)房?jī)r(jià)。數(shù)據(jù)集包含了房屋的面積、房間數(shù)量、地理位置等特征以及對(duì)應(yīng)的房?jī)r(jià)。在選擇評(píng)估指標(biāo)來(lái)衡量模型的性能時(shí),需要綜合考慮模型的準(zhǔn)確性和誤差的性質(zhì)。以下哪個(gè)評(píng)估指標(biāo)不僅考慮了預(yù)測(cè)值與真實(shí)值的偏差,還考慮了偏差的平方?()A.平均絕對(duì)誤差(MAE)B.均方誤差(MSE)C.決定系數(shù)(R2)D.準(zhǔn)確率(Accuracy)5、在一個(gè)回歸問(wèn)題中,如果數(shù)據(jù)存在多重共線性,以下哪種方法可以用于解決這個(gè)問(wèn)題?()A.特征選擇B.正則化C.主成分回歸D.以上方法都可以6、假設(shè)要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行無(wú)監(jiān)督學(xué)習(xí),以發(fā)現(xiàn)潛在的模式和結(jié)構(gòu)。以下哪種方法可能是首選?()A.自編碼器(Autoencoder),通過(guò)重構(gòu)輸入數(shù)據(jù)學(xué)習(xí)特征,但可能無(wú)法發(fā)現(xiàn)復(fù)雜模式B.生成對(duì)抗網(wǎng)絡(luò)(GAN),通過(guò)對(duì)抗訓(xùn)練生成新數(shù)據(jù),但訓(xùn)練不穩(wěn)定C.深度信念網(wǎng)絡(luò)(DBN),能夠提取高層特征,但訓(xùn)練難度較大D.以上方法都可以嘗試,根據(jù)數(shù)據(jù)特點(diǎn)和任務(wù)需求選擇7、特征工程是機(jī)器學(xué)習(xí)中的重要環(huán)節(jié)。以下關(guān)于特征工程的說(shuō)法中,錯(cuò)誤的是:特征工程包括特征提取、特征選擇和特征轉(zhuǎn)換等步驟。目的是從原始數(shù)據(jù)中提取出有效的特征,提高模型的性能。那么,下列關(guān)于特征工程的說(shuō)法錯(cuò)誤的是()A.特征提取是從原始數(shù)據(jù)中自動(dòng)學(xué)習(xí)特征表示的過(guò)程B.特征選擇是從眾多特征中選擇出對(duì)模型性能有重要影響的特征C.特征轉(zhuǎn)換是將原始特征進(jìn)行變換,以提高模型的性能D.特征工程只在傳統(tǒng)的機(jī)器學(xué)習(xí)算法中需要,深度學(xué)習(xí)算法不需要進(jìn)行特征工程8、假設(shè)正在開發(fā)一個(gè)用于圖像識(shí)別的深度學(xué)習(xí)模型,需要選擇合適的超參數(shù)。以下哪種方法可以用于自動(dòng)搜索和優(yōu)化超參數(shù)?()A.隨機(jī)搜索B.網(wǎng)格搜索C.基于模型的超參數(shù)優(yōu)化D.以上方法都可以9、在強(qiáng)化學(xué)習(xí)中,智能體通過(guò)與環(huán)境進(jìn)行交互來(lái)學(xué)習(xí)最優(yōu)策略。假設(shè)一個(gè)機(jī)器人需要在復(fù)雜的環(huán)境中找到通往目標(biāo)的最佳路徑,并且在途中會(huì)遇到各種障礙和獎(jiǎng)勵(lì)。在這種情況下,以下哪種強(qiáng)化學(xué)習(xí)算法可能更適合解決這個(gè)問(wèn)題?()A.Q-learning算法,通過(guò)估計(jì)狀態(tài)-動(dòng)作值函數(shù)來(lái)選擇動(dòng)作B.SARSA算法,基于當(dāng)前策略進(jìn)行策略評(píng)估和改進(jìn)C.策略梯度算法,直接優(yōu)化策略的參數(shù)D.以上算法都不適合,需要使用專門的路徑規(guī)劃算法10、在自然語(yǔ)言處理任務(wù)中,如文本分類,詞向量表示是基礎(chǔ)。常見(jiàn)的詞向量模型有Word2Vec和GloVe等。假設(shè)我們有一個(gè)大量的文本數(shù)據(jù)集,想要得到高質(zhì)量的詞向量表示,同時(shí)考慮到計(jì)算效率和效果。以下關(guān)于這兩種詞向量模型的比較,哪一項(xiàng)是不準(zhǔn)確的?()A.Word2Vec可以通過(guò)CBOW和Skip-gram兩種方式訓(xùn)練,靈活性較高B.GloVe基于全局的詞共現(xiàn)統(tǒng)計(jì)信息,能夠捕捉更全局的語(yǔ)義關(guān)系C.Word2Vec訓(xùn)練速度較慢,不適用于大規(guī)模數(shù)據(jù)集D.GloVe在某些任務(wù)上可能比Word2Vec表現(xiàn)更好,但具體效果取決于數(shù)據(jù)和任務(wù)11、在進(jìn)行特征選擇時(shí),有多種方法可以評(píng)估特征的重要性。假設(shè)我們有一個(gè)包含多個(gè)特征的數(shù)據(jù)集。以下關(guān)于特征重要性評(píng)估方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.信息增益通過(guò)計(jì)算特征引入前后信息熵的變化來(lái)衡量特征的重要性B.卡方檢驗(yàn)可以檢驗(yàn)特征與目標(biāo)變量之間的獨(dú)立性,從而評(píng)估特征的重要性C.隨機(jī)森林中的特征重要性評(píng)估是基于特征對(duì)模型性能的貢獻(xiàn)程度D.所有的特征重要性評(píng)估方法得到的結(jié)果都是完全準(zhǔn)確和可靠的,不需要進(jìn)一步驗(yàn)證12、在進(jìn)行機(jī)器學(xué)習(xí)模型評(píng)估時(shí),除了準(zhǔn)確性等常見(jiàn)指標(biāo)外,還可以使用混淆矩陣來(lái)更詳細(xì)地分析模型的性能。對(duì)于一個(gè)二分類問(wèn)題,混淆矩陣包含了真陽(yáng)性(TP)、真陰性(TN)、假陽(yáng)性(FP)和假陰性(FN)等信息。以下哪個(gè)指標(biāo)可以通過(guò)混淆矩陣計(jì)算得到,并且對(duì)于不平衡數(shù)據(jù)集的評(píng)估較為有效?()A.準(zhǔn)確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)13、假設(shè)正在進(jìn)行一個(gè)異常檢測(cè)任務(wù),數(shù)據(jù)具有高維度和復(fù)雜的分布。以下哪種技術(shù)可以用于將高維數(shù)據(jù)映射到低維空間以便更好地檢測(cè)異常?()A.核主成分分析(KPCA)B.局部線性嵌入(LLE)C.拉普拉斯特征映射D.以上技術(shù)都可以14、考慮一個(gè)推薦系統(tǒng),需要根據(jù)用戶的歷史行為和興趣為其推薦相關(guān)的商品或內(nèi)容。在構(gòu)建推薦模型時(shí),可以使用基于內(nèi)容的推薦、協(xié)同過(guò)濾推薦或混合推薦等方法。如果用戶的歷史行為數(shù)據(jù)較為稀疏,以下哪種推薦方法可能更合適?()A.基于內(nèi)容的推薦,利用商品的屬性和用戶的偏好進(jìn)行推薦B.協(xié)同過(guò)濾推薦,基于用戶之間的相似性進(jìn)行推薦C.混合推薦,結(jié)合多種推薦方法的優(yōu)點(diǎn)D.以上方法都不合適,無(wú)法進(jìn)行有效推薦15、在構(gòu)建機(jī)器學(xué)習(xí)模型時(shí),選擇合適的正則化方法可以防止過(guò)擬合。假設(shè)我們正在訓(xùn)練一個(gè)邏輯回歸模型。以下關(guān)于正則化的描述,哪一項(xiàng)是錯(cuò)誤的?()A.L1正則化會(huì)使部分模型參數(shù)變?yōu)?,從而實(shí)現(xiàn)特征選擇B.L2正則化通過(guò)對(duì)模型參數(shù)的平方和進(jìn)行懲罰,使參數(shù)值變小C.正則化參數(shù)越大,對(duì)模型的約束越強(qiáng),可能導(dǎo)致模型欠擬合D.同時(shí)使用L1和L2正則化(ElasticNet)總是比單獨(dú)使用L1或L2正則化效果好16、在使用支持向量機(jī)(SVM)進(jìn)行分類時(shí),核函數(shù)的選擇對(duì)模型性能有重要影響。假設(shè)我們要對(duì)非線性可分的數(shù)據(jù)進(jìn)行分類。以下關(guān)于核函數(shù)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.線性核函數(shù)適用于數(shù)據(jù)本身接近線性可分的情況B.多項(xiàng)式核函數(shù)可以擬合復(fù)雜的非線性關(guān)系,但計(jì)算復(fù)雜度較高C.高斯核函數(shù)(RBF核)對(duì)數(shù)據(jù)的分布不敏感,適用于大多數(shù)情況D.選擇核函數(shù)時(shí),只需要考慮模型的復(fù)雜度,不需要考慮數(shù)據(jù)的特點(diǎn)17、在一個(gè)深度學(xué)習(xí)模型的訓(xùn)練過(guò)程中,出現(xiàn)了梯度消失的問(wèn)題。以下哪種方法可以嘗試解決這個(gè)問(wèn)題?()A.使用ReLU激活函數(shù)B.增加網(wǎng)絡(luò)層數(shù)C.減小學(xué)習(xí)率D.以上方法都可能有效18、假設(shè)正在構(gòu)建一個(gè)語(yǔ)音識(shí)別系統(tǒng),需要對(duì)輸入的語(yǔ)音信號(hào)進(jìn)行預(yù)處理和特征提取。語(yǔ)音信號(hào)具有時(shí)變、非平穩(wěn)等特點(diǎn),在預(yù)處理階段,以下哪種操作通常不是必需的?()A.去除背景噪聲B.對(duì)語(yǔ)音信號(hào)進(jìn)行分幀和加窗C.將語(yǔ)音信號(hào)轉(zhuǎn)換為頻域表示D.對(duì)語(yǔ)音信號(hào)進(jìn)行壓縮編碼,減少數(shù)據(jù)量19、在一個(gè)金融風(fēng)險(xiǎn)預(yù)測(cè)的項(xiàng)目中,需要根據(jù)客戶的信用記錄、收入水平、負(fù)債情況等多種因素來(lái)預(yù)測(cè)其違約的可能性。同時(shí),要求模型能夠適應(yīng)不斷變化的市場(chǎng)環(huán)境和新的數(shù)據(jù)特征。以下哪種模型架構(gòu)和訓(xùn)練策略可能是最恰當(dāng)?shù)??()A.構(gòu)建一個(gè)線性回歸模型,簡(jiǎn)單直觀,易于解釋和更新,但可能無(wú)法處理復(fù)雜的非線性關(guān)系B.選擇邏輯回歸模型,結(jié)合正則化技術(shù)防止過(guò)擬合,能夠處理二分類問(wèn)題,但對(duì)于多因素的復(fù)雜關(guān)系表達(dá)能力有限C.建立多層感知機(jī)神經(jīng)網(wǎng)絡(luò),通過(guò)調(diào)整隱藏層的數(shù)量和節(jié)點(diǎn)數(shù)來(lái)捕捉復(fù)雜關(guān)系,但訓(xùn)練難度較大,容易過(guò)擬合D.采用基于隨機(jī)森林的集成學(xué)習(xí)方法,結(jié)合特征選擇和超參數(shù)調(diào)優(yōu),能夠處理多因素和非線性關(guān)系,且具有較好的穩(wěn)定性和泛化能力20、機(jī)器學(xué)習(xí)在自然語(yǔ)言處理領(lǐng)域有廣泛的應(yīng)用。以下關(guān)于機(jī)器學(xué)習(xí)在自然語(yǔ)言處理中的說(shuō)法中,錯(cuò)誤的是:機(jī)器學(xué)習(xí)可以用于文本分類、情感分析、機(jī)器翻譯等任務(wù)。常見(jiàn)的自然語(yǔ)言處理算法有詞袋模型、TF-IDF、深度學(xué)習(xí)模型等。那么,下列關(guān)于機(jī)器學(xué)習(xí)在自然語(yǔ)言處理中的說(shuō)法錯(cuò)誤的是()A.詞袋模型將文本表示為詞的集合,忽略了詞的順序和語(yǔ)法結(jié)構(gòu)B.TF-IDF可以衡量一個(gè)詞在文檔中的重要性C.深度學(xué)習(xí)模型在自然語(yǔ)言處理中表現(xiàn)出色,但需要大量的訓(xùn)練數(shù)據(jù)和計(jì)算資源D.機(jī)器學(xué)習(xí)在自然語(yǔ)言處理中的應(yīng)用已經(jīng)非常成熟,不需要進(jìn)一步的研究和發(fā)展21、假設(shè)正在進(jìn)行一個(gè)情感分析任務(wù),使用深度學(xué)習(xí)模型。以下哪種神經(jīng)網(wǎng)絡(luò)架構(gòu)常用于情感分析?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)D.以上都可以22、在一個(gè)客戶流失預(yù)測(cè)的問(wèn)題中,需要根據(jù)客戶的消費(fèi)行為、服務(wù)使用情況等數(shù)據(jù)來(lái)提前預(yù)測(cè)哪些客戶可能會(huì)流失。以下哪種特征工程方法可能是最有幫助的?()A.手動(dòng)選擇和構(gòu)建與客戶流失相關(guān)的特征,如消費(fèi)頻率、消費(fèi)金額的變化等,但可能忽略一些潛在的重要特征B.利用自動(dòng)特征選擇算法,如基于相關(guān)性或基于樹模型的特征重要性評(píng)估,但可能受到數(shù)據(jù)噪聲的影響C.進(jìn)行特征變換,如對(duì)數(shù)變換、標(biāo)準(zhǔn)化等,以改善數(shù)據(jù)分布和模型性能,但可能丟失原始數(shù)據(jù)的某些信息D.以上方法結(jié)合使用,綜合考慮數(shù)據(jù)特點(diǎn)和模型需求23、考慮在一個(gè)圖像識(shí)別任務(wù)中,需要對(duì)不同的物體進(jìn)行分類,例如貓、狗、汽車等。為了提高模型的準(zhǔn)確性和泛化能力,以下哪種數(shù)據(jù)增強(qiáng)技術(shù)可能是有效的()A.隨機(jī)旋轉(zhuǎn)圖像B.增加圖像的亮度C.對(duì)圖像進(jìn)行模糊處理D.減小圖像的分辨率24、在一個(gè)異常檢測(cè)的任務(wù)中,數(shù)據(jù)分布呈現(xiàn)多峰且存在離群點(diǎn)。以下哪種異常檢測(cè)算法可能表現(xiàn)較好?()A.基于密度的局部異常因子(LOF)算法,能夠發(fā)現(xiàn)局部密度差異較大的異常點(diǎn),但對(duì)參數(shù)敏感B.一類支持向量機(jī)(One-ClassSVM),適用于高維數(shù)據(jù),但對(duì)數(shù)據(jù)分布的假設(shè)較強(qiáng)C.基于聚類的異常檢測(cè),將遠(yuǎn)離聚類中心的點(diǎn)視為異常,但聚類效果對(duì)結(jié)果影響較大D.以上算法結(jié)合使用,根據(jù)數(shù)據(jù)特點(diǎn)選擇合適的方法或進(jìn)行組合25、在進(jìn)行特征工程時(shí),需要對(duì)連續(xù)型特征進(jìn)行離散化處理。以下哪種離散化方法在某些情況下可以保留更多的信息,同時(shí)減少數(shù)據(jù)的復(fù)雜性?()A.等寬離散化B.等頻離散化C.基于聚類的離散化D.基于決策樹的離散化二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)解釋如何在推薦系統(tǒng)中處理冷啟動(dòng)問(wèn)題。2、(本題5分)說(shuō)明機(jī)器學(xué)習(xí)在化學(xué)材料研究中的作用。3、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)在情感分析中的作用。4、(本題5分)機(jī)器學(xué)習(xí)中主成分分析(PCA)的原理是什么?三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)通過(guò)園藝設(shè)計(jì)數(shù)據(jù)規(guī)劃美麗的花園景觀。2、(本題5分)通過(guò)中醫(yī)診斷數(shù)據(jù)輔助中醫(yī)診斷和治療。3、(本題5分)利用隨機(jī)森林模型分析消費(fèi)者對(duì)不同品牌的偏好

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論