廣西北海中學(xué)2025屆高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第1頁(yè)
廣西北海中學(xué)2025屆高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第2頁(yè)
廣西北海中學(xué)2025屆高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第3頁(yè)
廣西北海中學(xué)2025屆高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第4頁(yè)
廣西北海中學(xué)2025屆高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣西北海中學(xué)2025屆高三第三次測(cè)評(píng)數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是函數(shù)圖象上的一點(diǎn),過(guò)作圓的兩條切線,切點(diǎn)分別為,則的最小值為()A. B. C.0 D.2.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎(jiǎng),現(xiàn)甲從盒中隨機(jī)取出2張,則至少有一張有獎(jiǎng)的概率為()A. B. C. D.3.已知向量,夾角為,,,則()A.2 B.4 C. D.4.設(shè)M是邊BC上任意一點(diǎn),N為AM的中點(diǎn),若,則的值為()A.1 B. C. D.5.若滿(mǎn)足,且目標(biāo)函數(shù)的最大值為2,則的最小值為()A.8 B.4 C. D.66.如圖,在中,點(diǎn),分別為,的中點(diǎn),若,,且滿(mǎn)足,則等于()A.2 B. C. D.7.中,,為的中點(diǎn),,,則()A. B. C. D.28.已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù))有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.9.若函數(shù)的圖象上兩點(diǎn),關(guān)于直線的對(duì)稱(chēng)點(diǎn)在的圖象上,則的取值范圍是()A. B. C. D.10.如圖所示的莖葉圖為高三某班名學(xué)生的化學(xué)考試成績(jī),算法框圖中輸入的,,,,為莖葉圖中的學(xué)生成績(jī),則輸出的,分別是()A., B.,C., D.,11.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.12.設(shè)、,數(shù)列滿(mǎn)足,,,則()A.對(duì)于任意,都存在實(shí)數(shù),使得恒成立B.對(duì)于任意,都存在實(shí)數(shù),使得恒成立C.對(duì)于任意,都存在實(shí)數(shù),使得恒成立D.對(duì)于任意,都存在實(shí)數(shù),使得恒成立二、填空題:本題共4小題,每小題5分,共20分。13.在的展開(kāi)式中,常數(shù)項(xiàng)為_(kāi)_______.(用數(shù)字作答)14.一個(gè)袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個(gè),從中任意摸取3個(gè)小球,每個(gè)小球被取出的可能性相等,則取出的3個(gè)小球中數(shù)字最大的為4的概率是__.15.的展開(kāi)式中的系數(shù)為_(kāi)___.16.已知滿(mǎn)足且目標(biāo)函數(shù)的最大值為7,最小值為1,則___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.18.(12分)某商場(chǎng)為改進(jìn)服務(wù)質(zhì)量,隨機(jī)抽取了200名進(jìn)場(chǎng)購(gòu)物的顧客進(jìn)行問(wèn)卷調(diào)查.調(diào)查后,就顧客“購(gòu)物體驗(yàn)”的滿(mǎn)意度統(tǒng)計(jì)如下:滿(mǎn)意不滿(mǎn)意男4040女8040(1)是否有97.5%的把握認(rèn)為顧客購(gòu)物體驗(yàn)的滿(mǎn)意度與性別有關(guān)?(2)為答謝顧客,該商場(chǎng)對(duì)某款價(jià)格為100元/件的商品開(kāi)展促銷(xiāo)活動(dòng).據(jù)統(tǒng)計(jì),在此期間顧客購(gòu)買(mǎi)該商品的支付情況如下:支付方式現(xiàn)金支付購(gòu)物卡支付APP支付頻率10%30%60%優(yōu)惠方式按9折支付按8折支付其中有1/3的顧客按4折支付,1/2的顧客按6折支付,1/6的顧客按8折支付將上述頻率作為相應(yīng)事件發(fā)生的概率,記某顧客購(gòu)買(mǎi)一件該促銷(xiāo)商品所支付的金額為,求的分布列和數(shù)學(xué)期望.附表及公式:.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819.(12分)在平面直角坐標(biāo)系中,曲線,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求曲線、的極坐標(biāo)方程;(2)在極坐標(biāo)系中,射線與曲線,分別交于、兩點(diǎn)(異于極點(diǎn)),定點(diǎn),求的面積20.(12分)已知函數(shù).(1)當(dāng)時(shí),試求曲線在點(diǎn)處的切線;(2)試討論函數(shù)的單調(diào)區(qū)間.21.(12分)已知等差數(shù)列和等比數(shù)列的各項(xiàng)均為整數(shù),它們的前項(xiàng)和分別為,且,.(1)求數(shù)列,的通項(xiàng)公式;(2)求;(3)是否存在正整數(shù),使得恰好是數(shù)列或中的項(xiàng)?若存在,求出所有滿(mǎn)足條件的的值;若不存在,說(shuō)明理由.22.(10分)已知是等腰直角三角形,.分別為的中點(diǎn),沿將折起,得到如圖所示的四棱錐.(Ⅰ)求證:平面平面.(Ⅱ)當(dāng)三棱錐的體積取最大值時(shí),求平面與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

先畫(huà)出函數(shù)圖像和圓,可知,若設(shè),則,所以,而要求的最小值,只要取得最大值,若設(shè)圓的圓心為,則,所以只要取得最小值,若設(shè),則,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最小值即可.【詳解】記圓的圓心為,設(shè),則,設(shè),記,則,令,因?yàn)樵谏蠁握{(diào)遞增,且,所以當(dāng)時(shí),;當(dāng)時(shí),,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以(當(dāng)時(shí)等號(hào)成立).故選:C【點(diǎn)睛】此題考查的是兩個(gè)向量的數(shù)量積的最小值,利用了導(dǎo)數(shù)求解,考查了轉(zhuǎn)化思想和運(yùn)算能力,屬于難題.2、C【解析】

先計(jì)算出總的基本事件的個(gè)數(shù),再計(jì)算出兩張都沒(méi)獲獎(jiǎng)的個(gè)數(shù),根據(jù)古典概型的概率,求出兩張都沒(méi)有獎(jiǎng)的概率,由對(duì)立事件的概率關(guān)系,即可求解.【詳解】從5張“刮刮卡”中隨機(jī)取出2張,共有種情況,2張均沒(méi)有獎(jiǎng)的情況有(種),故所求概率為.故選:C.【點(diǎn)睛】本題考查古典概型的概率、對(duì)立事件的概率關(guān)系,意在考查數(shù)學(xué)建模、數(shù)學(xué)計(jì)算能力,屬于基礎(chǔ)題.3、A【解析】

根據(jù)模長(zhǎng)計(jì)算公式和數(shù)量積運(yùn)算,即可容易求得結(jié)果.【詳解】由于,故選:A.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,模長(zhǎng)的求解,屬綜合基礎(chǔ)題.4、B【解析】

設(shè),通過(guò),再利用向量的加減運(yùn)算可得,結(jié)合條件即可得解.【詳解】設(shè),則有.又,所以,有.故選B.【點(diǎn)睛】本題考查了向量共線及向量運(yùn)算知識(shí),利用向量共線及向量運(yùn)算知識(shí),用基底向量向量來(lái)表示所求向量,利用平面向量表示法唯一來(lái)解決問(wèn)題.5、A【解析】

作出可行域,由,可得.當(dāng)直線過(guò)可行域內(nèi)的點(diǎn)時(shí),最大,可得.再由基本不等式可求的最小值.【詳解】作出可行域,如圖所示由,可得.平移直線,當(dāng)直線過(guò)可行域內(nèi)的點(diǎn)時(shí),最大,即最大,最大值為2.解方程組,得..,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.的最小值為8.故選:.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,考查基本不等式,屬于中檔題.6、D【解析】

選取為基底,其他向量都用基底表示后進(jìn)行運(yùn)算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點(diǎn)睛】本題考查向量的數(shù)量積,解題關(guān)鍵是選取兩個(gè)不共線向量作為基底,其他向量都用基底表示參與運(yùn)算,這樣做目標(biāo)明確,易于操作.7、D【解析】

在中,由正弦定理得;進(jìn)而得,在中,由余弦定理可得.【詳解】在中,由正弦定理得,得,又,所以為銳角,所以,,在中,由余弦定理可得,.故選:D【點(diǎn)睛】本題主要考查了正余弦定理的應(yīng)用,考查了學(xué)生的運(yùn)算求解能力.8、B【解析】

求出導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,確定函數(shù)的最值,根據(jù)零點(diǎn)存在定理可確定參數(shù)范圍.【詳解】,當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,∴在上只有一個(gè)極大值也是最大值,顯然時(shí),,時(shí),,因此要使函數(shù)有兩個(gè)零點(diǎn),則,∴.故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),考查用導(dǎo)數(shù)研究函數(shù)的最值,根據(jù)零點(diǎn)存在定理確定參數(shù)范圍.9、D【解析】

由題可知,可轉(zhuǎn)化為曲線與有兩個(gè)公共點(diǎn),可轉(zhuǎn)化為方程有兩解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,分析即得解【詳解】函數(shù)的圖象上兩點(diǎn),關(guān)于直線的對(duì)稱(chēng)點(diǎn)在上,即曲線與有兩個(gè)公共點(diǎn),即方程有兩解,即有兩解,令,則,則當(dāng)時(shí),;當(dāng)時(shí),,故時(shí)取得極大值,也即為最大值,當(dāng)時(shí),;當(dāng)時(shí),,所以滿(mǎn)足條件.故選:D【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.10、B【解析】

試題分析:由程序框圖可知,框圖統(tǒng)計(jì)的是成績(jī)不小于80和成績(jī)不小于60且小于80的人數(shù),由莖葉圖可知,成績(jī)不小于80的有12個(gè),成績(jī)不小于60且小于80的有26個(gè),故,.考點(diǎn):程序框圖、莖葉圖.11、B【解析】由三視圖知:幾何體是直三棱柱消去一個(gè)三棱錐,如圖:

直三棱柱的體積為,消去的三棱錐的體積為,

∴幾何體的體積,故選B.點(diǎn)睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關(guān)幾何量的數(shù)據(jù)是解答此類(lèi)問(wèn)題的關(guān)鍵;幾何體是直三棱柱消去一個(gè)三棱錐,結(jié)合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.12、D【解析】

取,可排除AB;由蛛網(wǎng)圖可得數(shù)列的單調(diào)情況,進(jìn)而得到要使,只需,由此可得到答案.【詳解】取,,數(shù)列恒單調(diào)遞增,且不存在最大值,故排除AB選項(xiàng);由蛛網(wǎng)圖可知,存在兩個(gè)不動(dòng)點(diǎn),且,,因?yàn)楫?dāng)時(shí),數(shù)列單調(diào)遞增,則;當(dāng)時(shí),數(shù)列單調(diào)遞減,則;所以要使,只需要,故,化簡(jiǎn)得且.故選:D.【點(diǎn)睛】本題考查遞推數(shù)列的綜合運(yùn)用,考查邏輯推理能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

的展開(kāi)式的通項(xiàng)為,取計(jì)算得到答案.【詳解】的展開(kāi)式的通項(xiàng)為:,取得到常數(shù)項(xiàng).故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力.14、【解析】

由題,得滿(mǎn)足題目要求的情況有,①有一個(gè)數(shù)字4,另外兩個(gè)數(shù)字從1,2,3里面選和②有兩個(gè)數(shù)字4,另外一個(gè)數(shù)字從1,2,3里面選,由此即可得到本題答案.【詳解】滿(mǎn)足題目要求的情況可以分成2大類(lèi):①有一個(gè)數(shù)字4,另外兩個(gè)數(shù)字從1,2,3里面選,一共有種情況;②有兩個(gè)數(shù)字4,另外一個(gè)數(shù)字從1,2,3里面選,一共有種情況,又從中任意摸取3個(gè)小球,有種情況,所以取出的3個(gè)小球中數(shù)字最大的為4的概率.故答案為:【點(diǎn)睛】本題主要考查古典概型與組合的綜合問(wèn)題,考查學(xué)生分析問(wèn)題和解決問(wèn)題的能力.15、28【解析】

將已知式轉(zhuǎn)化為,則的展開(kāi)式中的系數(shù)中的系數(shù),根據(jù)二項(xiàng)式展開(kāi)式可求得其值.【詳解】,所以的展開(kāi)式中的系數(shù)就是中的系數(shù),而中的系數(shù)為,展開(kāi)式中的系數(shù)為故答案為:28.【點(diǎn)睛】本題考查二項(xiàng)式展開(kāi)式中的某特定項(xiàng)的系數(shù),關(guān)鍵在于將原表達(dá)式化簡(jiǎn)將三項(xiàng)的冪的形式轉(zhuǎn)化為可求的二項(xiàng)式的形式,屬于基礎(chǔ)題.16、-2【解析】

先根據(jù)約束條件畫(huà)出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大最小值時(shí)所在的頂點(diǎn)即可.【詳解】由題意得:目標(biāo)函數(shù)在點(diǎn)B取得最大值為7,在點(diǎn)A處取得最小值為1,∴,,∴直線AB的方程是:,∴則,故答案為.【點(diǎn)睛】本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)根據(jù)條件由正弦定理得,又c=2a,所以,由余弦定理算出,進(jìn)而算出;(Ⅱ)由二倍角公式算出,代入兩角和的正弦公式計(jì)算即可.【詳解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【點(diǎn)睛】本題主要考查了正余弦定理的應(yīng)用,運(yùn)用二倍角公式和兩角和的正弦公式求值,考查了學(xué)生的運(yùn)算求解能力.18、(1)有97.5%的把握認(rèn)為顧客購(gòu)物體驗(yàn)的滿(mǎn)意度與性別有關(guān);(2)67元,見(jiàn)解析.【解析】

(1)根據(jù)表格數(shù)據(jù)代入公式,結(jié)合臨界值即得解;(2)的可能取值為40,60,80,1,根據(jù)題意依次計(jì)算概率,列出分布列,求數(shù)學(xué)期望即可.【詳解】(1)由題得,所以,有97.5%的把握認(rèn)為顧客購(gòu)物體驗(yàn)的滿(mǎn)意度與性別有關(guān).(2)由題意可知的可能取值為40,60,80,1.,,,.則的分布列為4060801所以,(元).【點(diǎn)睛】本題考查了統(tǒng)計(jì)和概率綜合,考查了列聯(lián)表,隨機(jī)變量的分布列和數(shù)學(xué)期望等知識(shí)點(diǎn),考查了學(xué)生數(shù)據(jù)處理,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.19、(1),;(2).【解析】

(1)先把參數(shù)方程化成普通方程,再利用極坐標(biāo)的公式把普通方程化成極坐標(biāo)方程;(2)先利用極坐標(biāo)求出弦長(zhǎng),再求高,最后求的面積.【詳解】(1)曲線的極坐標(biāo)方程為:,因?yàn)榍€的普通方程為:,曲線的極坐標(biāo)方程為;(2)由(1)得:點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,,點(diǎn)到射線的距離為的面積為.【點(diǎn)睛】本題考查普通方程、參數(shù)方程與極坐標(biāo)方程之間的互化,同時(shí)也考查了利用極坐標(biāo)方程求解面積問(wèn)題,考查計(jì)算能力,屬于中等題.20、(1);(2)見(jiàn)解析【解析】

(1)對(duì)函數(shù)進(jìn)行求導(dǎo),可以求出曲線在點(diǎn)處的切線,利用直線的斜截式方程可以求出曲線的切線方程;(2)對(duì)函數(shù)進(jìn)行求導(dǎo),對(duì)實(shí)數(shù)進(jìn)行分類(lèi)討論,可以求出函數(shù)的單調(diào)區(qū)間.【詳解】(1)當(dāng)時(shí),函數(shù)定義域?yàn)椋?所以切線方程為;(2)當(dāng)時(shí),函數(shù)定義域?yàn)?,在上單調(diào)遞增當(dāng)時(shí),恒成立,函數(shù)定義域?yàn)椋衷趩握{(diào)遞增,單調(diào)遞減,單調(diào)遞增當(dāng)時(shí),函數(shù)定義域?yàn)?,在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增當(dāng)時(shí),設(shè)的兩個(gè)根為且,由韋達(dá)定理易知兩根均為正根,且,所以函數(shù)的定義域?yàn)椋謱?duì)稱(chēng)軸,且,在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增【點(diǎn)睛】本題考查了曲線切線方程的求法,考查了利用函數(shù)的導(dǎo)數(shù)討論函數(shù)的單調(diào)性問(wèn)題,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論