版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆成都市高三(最后沖刺)數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數(shù)圖象上各點的橫坐標伸長到原來的3倍(縱坐標不變),再向右平移個單位長度,則所得函數(shù)圖象的一個對稱中心為()A. B. C. D.2.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點都在球上,則球的表面積為()A. B. C. D.3.已知雙曲線的左、右焦點分別為,過作一條直線與雙曲線右支交于兩點,坐標原點為,若,則該雙曲線的離心率為()A. B. C. D.4.在正方體中,E是棱的中點,F(xiàn)是側(cè)面內(nèi)的動點,且與平面的垂線垂直,如圖所示,下列說法不正確的是()A.點F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值5.已知實數(shù),滿足約束條件,則目標函數(shù)的最小值為A. B.C. D.6.公比為2的等比數(shù)列中存在兩項,,滿足,則的最小值為()A. B. C. D.7.函數(shù)的部分圖像如圖所示,若,點的坐標為,若將函數(shù)向右平移個單位后函數(shù)圖像關(guān)于軸對稱,則的最小值為()A. B. C. D.8.為雙曲線的左焦點,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標原點,若,且,則雙曲線的離心率為()A. B. C. D.9.過圓外一點引圓的兩條切線,則經(jīng)過兩切點的直線方程是().A. B. C. D.10.命題“”的否定是()A. B.C. D.11.命題:存在實數(shù),對任意實數(shù),使得恒成立;:,為奇函數(shù),則下列命題是真命題的是()A. B. C. D.12.已知,函數(shù),若函數(shù)恰有三個零點,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列中,為其前項和,,,則_________,_________.14.若實數(shù)x,y滿足不等式組x+y-4≤0,2x-3y-8≤0,x≥1,則目標函數(shù)15.函數(shù)的極大值為________.16.設(shè)f(x)=etx(t>0),過點P(t,0)且平行于y軸的直線與曲線C:y=f(x)的交點為Q,曲線C過點Q的切線交x軸于點R,若S(1,f(1)),則△PRS的面積的最小值是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學生.新生接待其實也是和社會溝通的一個平臺.校團委、學生會從在校學生中隨機抽取了160名學生,對是否愿意投入到新生接待工作進行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:愿意不愿意男生6020女士4040(1)根據(jù)上表說明,能否有99%把握認為愿意參加新生接待工作與性別有關(guān);(2)現(xiàn)從參與問卷調(diào)查且愿意參加新生接待工作的學生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機選取3人到火車站迎接新生,設(shè)選取的3人中女生人數(shù)為,寫出的分布列,并求.附:,其中.0.050.010.0013.8416.63510.82818.(12分)已知函數(shù)的最小正周期是,且當時,取得最大值.(1)求的解析式;(2)作出在上的圖象(要列表).19.(12分)數(shù)列滿足,是與的等差中項.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.20.(12分)已知,,函數(shù)的最小值為.(1)求證:;(2)若恒成立,求實數(shù)的最大值.21.(12分)如圖,在三棱錐中,,,側(cè)面為等邊三角形,側(cè)棱.(1)求證:平面平面;(2)求三棱錐外接球的體積.22.(10分)己知等差數(shù)列的公差,,且,,成等比數(shù)列.(1)求使不等式成立的最大自然數(shù)n;(2)記數(shù)列的前n項和為,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先化簡函數(shù)解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,可得所求函數(shù)的解析式為,再由正弦函數(shù)的對稱性得解.【詳解】,
將函數(shù)圖象上各點的橫坐標伸長到原來的3倍,所得函數(shù)的解析式為,
再向右平移個單位長度,所得函數(shù)的解析式為,,可得函數(shù)圖象的一個對稱中心為,故選D.【點睛】三角函數(shù)的圖象與性質(zhì)是高考考查的熱點之一,經(jīng)??疾槎x域、值域、周期性、對稱性、奇偶性、單調(diào)性、最值等,其中公式運用及其變形能力、運算能力、方程思想等可以在這些問題中進行體現(xiàn),在復習時要注意基礎(chǔ)知識的理解與落實.三角函數(shù)的性質(zhì)由函數(shù)的解析式確定,在解答三角函數(shù)性質(zhì)的綜合試題時要抓住函數(shù)解析式這個關(guān)鍵,在函數(shù)解析式較為復雜時要注意使用三角恒等變換公式把函數(shù)解析式化為一個角的一個三角函數(shù)形式,然后利用正弦(余弦)函數(shù)的性質(zhì)求解.2、B【解析】
分別取、的中點、,連接、、,利用二面角的定義轉(zhuǎn)化二面角的平面角為,然后分別過點作平面的垂線與過點作平面的垂線交于點,在中計算出,再利用勾股定理計算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【詳解】如下圖所示,分別取、的中點、,連接、、,由于是以為直角等腰直角三角形,為的中點,,,且、分別為、的中點,所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點,同理可知,的外心為點,分別過點作平面的垂線與過點作平面的垂線交于點,則點在平面內(nèi),如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【點睛】本題考查球體的表面積,考查二面角的定義,解決本題的關(guān)鍵在于找出球心的位置,同時考查了計算能力,屬于中等題.3、B【解析】
由題可知,,再結(jié)合雙曲線第一定義,可得,對有,即,解得,再對,由勾股定理可得,化簡即可求解【詳解】如圖,因為,所以.因為所以.在中,,即,得,則.在中,由得.故選:B【點睛】本題考查雙曲線的離心率求法,幾何性質(zhì)的應用,屬于中檔題4、C【解析】
分別根據(jù)線面平行的性質(zhì)定理以及異面直線的定義,體積公式分別進行判斷.【詳解】對于,設(shè)平面與直線交于點,連接、,則為的中點分別取、的中點、,連接、、,,平面,平面,平面.同理可得平面,、是平面內(nèi)的相交直線平面平面,由此結(jié)合平面,可得直線平面,即點是線段上上的動點.正確.對于,平面平面,和平面相交,與是異面直線,正確.對于,由知,平面平面,與不可能平行,錯誤.對于,因為,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【點睛】本題考查了正方形的性質(zhì)、空間位置關(guān)系、空間角、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.5、B【解析】
作出不等式組對應的平面區(qū)域,目標函數(shù)的幾何意義為動點到定點的斜率,利用數(shù)形結(jié)合即可得到的最小值.【詳解】解:作出不等式組對應的平面區(qū)域如圖:目標函數(shù)的幾何意義為動點到定點的斜率,當位于時,此時的斜率最小,此時.故選B.【點睛】本題主要考查線性規(guī)劃的應用以及兩點之間的斜率公式的計算,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.6、D【解析】
根據(jù)已知條件和等比數(shù)列的通項公式,求出關(guān)系,即可求解.【詳解】,當時,,當時,,當時,,當時,,當時,,當時,,最小值為.故選:D.【點睛】本題考查等比數(shù)列通項公式,注意為正整數(shù),如用基本不等式要注意能否取到等號,屬于基礎(chǔ)題.7、B【解析】
根據(jù)圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數(shù)圖象關(guān)于軸對稱,求得的最小值.【詳解】由于,函數(shù)最高點與最低點的高度差為,所以函數(shù)的半個周期,所以,又,,則有,可得,所以,將函數(shù)向右平移個單位后函數(shù)圖像關(guān)于軸對稱,即平移后為偶函數(shù),所以的最小值為1,故選:B.【點睛】該題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象求出函數(shù)的解析式是解決該題的關(guān)鍵,要求熟練掌握函數(shù)圖象之間的變換關(guān)系,屬于簡單題目.8、D【解析】
過點作,可得出點為的中點,由可求得的值,可計算出的值,進而可得出,結(jié)合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點作,設(shè)該雙曲線的右焦點為,連接.,.,,,為的中點,,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點睛】本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.9、A【解析】過圓外一點,引圓的兩條切線,則經(jīng)過兩切點的直線方程為,故選.10、D【解析】
根據(jù)全稱命題的否定是特稱命題,對命題進行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點睛】本題考查全稱命題的否定,難度容易.11、A【解析】
分別判斷命題和的真假性,然后根據(jù)含有邏輯聯(lián)結(jié)詞命題的真假性判斷出正確選項.【詳解】對于命題,由于,所以命題為真命題.對于命題,由于,由解得,且,所以是奇函數(shù),故為真命題.所以為真命題.、、都是假命題.故選:A【點睛】本小題主要考查誘導公式,考查函數(shù)的奇偶性,考查含有邏輯聯(lián)結(jié)詞命題真假性的判斷,屬于基礎(chǔ)題.12、C【解析】
當時,最多一個零點;當時,,利用導數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性畫函數(shù)草圖,根據(jù)草圖可得.【詳解】當時,,得;最多一個零點;當時,,,當,即時,,在,上遞增,最多一個零點.不合題意;當,即時,令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個零點;根據(jù)題意函數(shù)恰有3個零點函數(shù)在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.【點睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數(shù),故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.二、填空題:本題共4小題,每小題5分,共20分。13、8(寫為也得分)【解析】
由,得,.當時,,所以,所以的奇數(shù)項是以1為首項,以2為公比的等比數(shù)列;其偶數(shù)項是以2為首項,以2為公比的等比數(shù)列.則,.14、12【解析】
畫出約束條件的可行域,求出最優(yōu)解,即可求解目標函數(shù)的最大值.【詳解】根據(jù)約束條件畫出可行域,如下圖,由x+y-4=02x-3y-8=0,解得目標函數(shù)y=3x-z,當y=3x-z過點(4,0)時,z有最大值,且最大值為12.故答案為:12.【點睛】本題考查線性規(guī)劃的簡單應用,屬于基礎(chǔ)題.15、【解析】
對函數(shù)求導,根據(jù)函數(shù)單調(diào)性,即可容易求得函數(shù)的極大值.【詳解】依題意,得.所以當時,;當時,.所以當時,函數(shù)有極大值.故答案為:.【點睛】本題考查利用導數(shù)研究函數(shù)的性質(zhì),考查運算求解能力以及化歸轉(zhuǎn)化思想,屬基礎(chǔ)題.16、【解析】
計算R(t,0),PR=t﹣(t),△PRS的面積為S,導數(shù)S′,由S′=0得t=1,根據(jù)函數(shù)的單調(diào)性得到最值.【詳解】∵PQ∥y軸,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的導數(shù)f′(x)=tetx,∴過Q的切線斜率k=t,設(shè)R(r,0),則k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面積為S,導數(shù)S′,由S′=0得t=1,當t>1時,S′>0,當0<t<1時,S′<0,∴t=1為極小值點,也為最小值點,∴△PRS的面積的最小值為.故答案為:.【點睛】本題考查了利用導數(shù)求面積的最值問題,意在考查學生的計算能力和應用能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)有99%把握認為愿意參加新生接待工作與性別有關(guān);(2)詳見解析.【解析】
(1)計算得到,由此可得結(jié)論;(2)根據(jù)分層抽樣原則可得男生和女生人數(shù),由超幾何分布概率公式可求得的所有可能取值所對應的概率,由此得到分布列;根據(jù)數(shù)學期望計算公式計算可得期望.【詳解】(1)∵的觀測值,有的把握認為愿意參加新生接待工作與性別有關(guān).(2)根據(jù)分層抽樣方法得:男生有人,女生有人,選取的人中,男生有人,女生有人.則的可能取值有,,,,,的分布列為:.【點睛】本題考查獨立性檢驗、分層抽樣、超幾何分布的分布列和數(shù)學期望的求解;關(guān)鍵是能夠明確隨機變量服從于超幾何分布,進而利用超幾何分布概率公式求得隨機變量每個取值所對應的概率.18、(1);(2)見解析.【解析】
(1)根據(jù)函數(shù)的最小正周期可求出的值,由該函數(shù)的最大值可得出的值,再由,結(jié)合的取值范圍可求得的值,由此可得出函數(shù)的解析式;(2)由計算出的取值范圍,據(jù)此列表、描點、連線可得出函數(shù)在區(qū)間上的圖象.【詳解】(1)因為函數(shù)的最小正周期是,所以.又因為當時,函數(shù)取得最大值,所以,同時,得,因為,所以,所以;(2)因為,所以,列表如下:描點、連線得圖象:【點睛】本題考查正弦函數(shù)解析式的求解,同時也考查了利用五點作圖法作圖,考查分析問題與解決問題的能力,屬于中等題.19、(1)見解析,(2)【解析】
(1)根據(jù)等差中項的定義得,然后構(gòu)造新等比數(shù)列,寫出的通項即可求(2)根據(jù)(1)的結(jié)果,分組求和即可【詳解】解:(1)由已知可得,即,可化為,故數(shù)列是以為首項,2為公比的等比數(shù)列.即有,所以.(2)由(1)知,數(shù)列的通項為:,故.【點睛】考查等差中項的定義和分組求和的方法;中檔題.20、(1)見解析;(2)最大值為.【解析】
(1)將函數(shù)表示為分段函數(shù),利用函數(shù)的單調(diào)性求出該函數(shù)的最小值,進而可證得結(jié)論成立;(2)由可得出,并將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,進而可得出實數(shù)的最大值.【詳解】(1).當時,函數(shù)單調(diào)遞減,則;當時,函數(shù)單調(diào)遞增,則;當時,函數(shù)單調(diào)遞增,則.綜上所述,,所以;(2)因為恒成立,且,,所以恒成立,即.因為,當且僅當時等號成立,所以,實數(shù)的最大值為.【點睛】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度網(wǎng)絡(luò)安全應急響應托管服務(wù)合同2篇
- 二零二五年度綠色建筑評價標識工程聯(lián)營協(xié)議3篇
- 二零二五年度大貨車司機職業(yè)風險防范合同范本3篇
- 網(wǎng)絡(luò)安全文化傳播與防范意識強化研究
- 2025版實訓基地學生實習就業(yè)安全保障合同2篇
- 小學教育中的數(shù)學創(chuàng)新思維培養(yǎng)
- 清遠廣東清遠陽山縣紀委監(jiān)委招聘政府購買服務(wù)人員筆試歷年參考題庫附帶答案詳解
- 杭州浙江杭州市湖墅學校編外教師招聘筆試歷年參考題庫附帶答案詳解
- 二零二五年度智能家具制造承包合作協(xié)議3篇
- 2025年牛津譯林版選擇性必修1地理下冊月考試卷
- 肩袖損傷的護理查房課件
- 2023屆北京市順義區(qū)高三二模數(shù)學試卷
- 公司差旅費報銷單
- 梁山伯與祝英臺小提琴譜樂譜
- 我國全科醫(yī)生培訓模式
- 2021年上海市楊浦區(qū)初三一模語文試卷及參考答案(精校word打印版)
- 八年級上冊英語完形填空、閱讀理解100題含參考答案
- 八年級物理下冊功率課件
- DBJ51-T 188-2022 預拌流態(tài)固化土工程應用技術(shù)標準
- 《長津湖》電影賞析PPT
- 銷售禮儀培訓PPT
評論
0/150
提交評論