版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆鎮(zhèn)江市重點(diǎn)中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.復(fù)數(shù)().A. B. C. D.2.已知,滿足約束條件,則的最大值為A. B. C. D.3.在中,點(diǎn)為中點(diǎn),過(guò)點(diǎn)的直線與,所在直線分別交于點(diǎn),,若,,則的最小值為()A. B.2 C.3 D.4.已知,,,是球的球面上四個(gè)不同的點(diǎn),若,且平面平面,則球的表面積為()A. B. C. D.5.盒子中有編號(hào)為1,2,3,4,5,6,7的7個(gè)相同的球,從中任取3個(gè)編號(hào)不同的球,則取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的概率是()A. B. C. D.6.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.87.對(duì)某兩名高三學(xué)生在連續(xù)9次數(shù)學(xué)測(cè)試中的成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì)得到折線圖,下面是關(guān)于這兩位同學(xué)的數(shù)學(xué)成績(jī)分析.①甲同學(xué)的成績(jī)折線圖具有較好的對(duì)稱性,故平均成績(jī)?yōu)?30分;②根據(jù)甲同學(xué)成績(jī)折線圖提供的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),估計(jì)該同學(xué)平均成績(jī)?cè)趨^(qū)間110,120內(nèi);③乙同學(xué)的數(shù)學(xué)成績(jī)與測(cè)試次號(hào)具有比較明顯的線性相關(guān)性,且為正相關(guān);④乙同學(xué)連續(xù)九次測(cè)驗(yàn)成績(jī)每一次均有明顯進(jìn)步.其中正確的個(gè)數(shù)為()A.4 B.3 C.2 D.18.已知為虛數(shù)單位,復(fù)數(shù),則其共軛復(fù)數(shù)()A. B. C. D.9.如圖,圓錐底面半徑為,體積為,、是底面圓的兩條互相垂直的直徑,是母線的中點(diǎn),已知過(guò)與的平面與圓錐側(cè)面的交線是以為頂點(diǎn)的拋物線的一部分,則該拋物線的焦點(diǎn)到圓錐頂點(diǎn)的距離等于()A. B.1 C. D.10.已知函數(shù)是上的偶函數(shù),是的奇函數(shù),且,則的值為()A. B. C. D.11.秦九韶是我國(guó)南寧時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書(shū)九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例.若輸入、的值分別為、,則輸出的值為()A. B. C. D.12.如圖是二次函數(shù)的部分圖象,則函數(shù)的零點(diǎn)所在的區(qū)間是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若關(guān)于x的方程有且只有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是_______________.14.在中,角所對(duì)的邊分別為,為的面積,若,,則的形狀為_(kāi)_________,的大小為_(kāi)_________.15.甲、乙兩人同時(shí)參加公務(wù)員考試,甲筆試、面試通過(guò)的概率分別為和;乙筆試、面試通過(guò)的概率分別為和.若筆試面試都通過(guò)才被錄取,且甲、乙錄取與否相互獨(dú)立,則該次考試只有一人被錄取的概率是__________.16.三棱錐中,點(diǎn)是斜邊上一點(diǎn).給出下列四個(gè)命題:①若平面,則三棱錐的四個(gè)面都是直角三角形;②若,,,平面,則三棱錐的外接球體積為;③若,,,在平面上的射影是內(nèi)心,則三棱錐的體積為2;④若,,,平面,則直線與平面所成的最大角為.其中正確命題的序號(hào)是__________.(把你認(rèn)為正確命題的序號(hào)都填上)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓:的兩個(gè)焦點(diǎn)是,,在橢圓上,且,為坐標(biāo)原點(diǎn),直線與直線平行,且與橢圓交于,兩點(diǎn).連接、與軸交于點(diǎn),.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求證:為定值.18.(12分)已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離比到軸的距離多.(1)求動(dòng)點(diǎn)的軌跡的方程;(2)設(shè),是軌跡在上異于原點(diǎn)的兩個(gè)不同點(diǎn),直線和的傾斜角分別為和,當(dāng),變化且時(shí),證明:直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).19.(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.(1)求曲線C的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;(2)若射線與曲線C交于點(diǎn)A(不同于極點(diǎn)O),與直線l交于點(diǎn)B,求的最大值.20.(12分)已知函數(shù).(1)求證:當(dāng)時(shí),;(2)若對(duì)任意存在和使成立,求實(shí)數(shù)的最小值.21.(12分)已知數(shù)列和,前項(xiàng)和為,且,是各項(xiàng)均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列和的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.22.(10分)已知函數(shù)f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)對(duì)任意,都有恒成立,求實(shí)數(shù)a的取值范圍;(3)證明:對(duì)一切,都有成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】試題分析:,故選A.【考點(diǎn)】復(fù)數(shù)運(yùn)算【名師點(diǎn)睛】復(fù)數(shù)代數(shù)形式的四則運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類似于多項(xiàng)式的合并同類項(xiàng),乘法法則類似于多項(xiàng)式的乘法法則,除法運(yùn)算則先將除式寫(xiě)成分式的形式,再將分母實(shí)數(shù)化.2、D【解析】
作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價(jià)于,作直線,向上平移,易知當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí)最大,所以,故選D.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問(wèn)題的基本方法.3、B【解析】
由,,三點(diǎn)共線,可得,轉(zhuǎn)化,利用均值不等式,即得解.【詳解】因?yàn)辄c(diǎn)為中點(diǎn),所以,又因?yàn)椋?,所以.因?yàn)椋?,三點(diǎn)共線,所以,所以,當(dāng)且僅當(dāng)即時(shí)等號(hào)成立,所以的最小值為1.故選:B【點(diǎn)睛】本題考查了三點(diǎn)共線的向量表示和利用均值不等式求最值,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.4、A【解析】
由題意畫(huà)出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【詳解】如圖,取BC中點(diǎn)G,連接AG,DG,則,,分別取與的外心E,F(xiàn),分別過(guò)E,F(xiàn)作平面ABC與平面DBC的垂線,相交于O,則O為四面體的球心,由,得正方形OEGF的邊長(zhǎng)為,則,四面體的外接球的半徑,球O的表面積為.故選A.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.5、B【解析】
由題意,取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的情況有,所有的情況有種由古典概型,取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的概率為:故選:B【點(diǎn)睛】本題考查了排列組合在古典概型中的應(yīng)用,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.6、A【解析】
依題意可得,再根據(jù)離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題.7、C【解析】
利用圖形,判斷折線圖平均分以及線性相關(guān)性,成績(jī)的比較,說(shuō)明正誤即可.【詳解】①甲同學(xué)的成績(jī)折線圖具有較好的對(duì)稱性,最高130分,平均成績(jī)?yōu)榈陀?30分,①錯(cuò)誤;②根據(jù)甲同學(xué)成績(jī)折線圖提供的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),估計(jì)該同學(xué)平均成績(jī)?cè)趨^(qū)間[110,120]內(nèi),②正確;③乙同學(xué)的數(shù)學(xué)成績(jī)與測(cè)試次號(hào)具有比較明顯的線性相關(guān)性,且為正相關(guān),③正確;④乙同學(xué)在這連續(xù)九次測(cè)驗(yàn)中第四次、第七次成績(jī)較上一次成績(jī)有退步,故④不正確.故選:C.【點(diǎn)睛】本題考查折線圖的應(yīng)用,線性相關(guān)以及平均分的求解,考查轉(zhuǎn)化思想以及計(jì)算能力,屬于基礎(chǔ)題.8、B【解析】
先根據(jù)復(fù)數(shù)的乘法計(jì)算出,然后再根據(jù)共軛復(fù)數(shù)的概念直接寫(xiě)出即可.【詳解】由,所以其共軛復(fù)數(shù).故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算以及共軛復(fù)數(shù)的概念,難度較易.9、D【解析】
建立平面直角坐標(biāo)系,求得拋物線的軌跡方程,解直角三角形求得拋物線的焦點(diǎn)到圓錐頂點(diǎn)的距離.【詳解】將拋物線放入坐標(biāo)系,如圖所示,∵,,,∴,設(shè)拋物線,代入點(diǎn),可得∴焦點(diǎn)為,即焦點(diǎn)為中點(diǎn),設(shè)焦點(diǎn)為,,,∴.故選:D【點(diǎn)睛】本小題考查圓錐曲線的概念,拋物線的性質(zhì),兩點(diǎn)間的距離等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,空間想象能力,推理論證能力,應(yīng)用意識(shí).10、B【解析】
根據(jù)函數(shù)的奇偶性及題設(shè)中關(guān)于與關(guān)系,轉(zhuǎn)換成關(guān)于的關(guān)系式,通過(guò)變形求解出的周期,進(jìn)而算出.【詳解】為上的奇函數(shù),,而函數(shù)是上的偶函數(shù),,,故為周期函數(shù),且周期為故選:B【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性,函數(shù)的周期性的應(yīng)用,屬于基礎(chǔ)題.11、B【解析】
列出循環(huán)的每一步,由此可得出輸出的值.【詳解】由題意可得:輸入,,,;第一次循環(huán),,,,繼續(xù)循環(huán);第二次循環(huán),,,,繼續(xù)循環(huán);第三次循環(huán),,,,跳出循環(huán);輸出.故選:B.【點(diǎn)睛】本題考查根據(jù)算法框圖計(jì)算輸出值,一般要列舉出算法的每一步,考查計(jì)算能力,屬于基礎(chǔ)題.12、B【解析】
根據(jù)二次函數(shù)圖象的對(duì)稱軸得出范圍,軸截距,求出的范圍,判斷在區(qū)間端點(diǎn)函數(shù)值正負(fù),即可求出結(jié)論.【詳解】∵,結(jié)合函數(shù)的圖象可知,二次函數(shù)的對(duì)稱軸為,,,∵,所以在上單調(diào)遞增.又因?yàn)?,所以函?shù)的零點(diǎn)所在的區(qū)間是.故選:B.【點(diǎn)睛】本題考查二次函數(shù)的圖象及函數(shù)的零點(diǎn),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
畫(huà)出函數(shù)的圖象,再畫(huà)的圖象,求出一個(gè)交點(diǎn)時(shí)的的值,然后平行移動(dòng)可得有兩個(gè)交點(diǎn)時(shí)的的范圍.【詳解】函數(shù)的圖象如圖所示:因?yàn)榉匠逃星抑挥袃蓚€(gè)不相等的實(shí)數(shù)根,所以圖象與直線有且只有兩個(gè)交點(diǎn)即可,當(dāng)過(guò)點(diǎn)時(shí)兩個(gè)函數(shù)有一個(gè)交點(diǎn),即時(shí),與函數(shù)有一個(gè)交點(diǎn),由圖象可知,直線向下平移后有兩個(gè)交點(diǎn),可得,故答案為:.【點(diǎn)睛】本題主要考查了方程的跟與函數(shù)的圖象交點(diǎn)的轉(zhuǎn)化,數(shù)形結(jié)合的思想,屬于中檔題.14、等腰三角形【解析】∵∴根據(jù)正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,15、【解析】
分別求得甲、乙被錄取的概率,根據(jù)獨(dú)立事件概率公式可求得結(jié)果.【詳解】甲被錄取的概率;乙被錄取的概率;只有一人被錄取的概率.故答案為:.【點(diǎn)睛】本題考查獨(dú)立事件概率的求解問(wèn)題,屬于基礎(chǔ)題.16、①②③【解析】
對(duì)①,由線面平行的性質(zhì)可判斷正確;對(duì)②,三棱錐外接球可看作正方體的外接球,結(jié)合外接球半徑公式即可求解;對(duì)③,結(jié)合題意作出圖形,由勾股定理和內(nèi)接圓對(duì)應(yīng)面積公式求出錐體的高,則可求解;對(duì)④,由動(dòng)點(diǎn)分析可知,當(dāng)點(diǎn)與點(diǎn)重合時(shí),直線與平面所成的角最大,結(jié)合幾何關(guān)系可判斷錯(cuò)誤;【詳解】對(duì)于①,因?yàn)槠矫?,所以,,,又,所以平面,所以,故四個(gè)面都是直角三角形,∴①正確;對(duì)于②,若,,,平面,∴三棱錐的外接球可以看作棱長(zhǎng)為4的正方體的外接球,∴,,∴體積為,∴②正確;對(duì)于③,設(shè)內(nèi)心是,則平面,連接,則有,又內(nèi)切圓半徑,所以,,故,∴三棱錐的體積為,∴③正確;對(duì)于④,∵若,平面,則直線與平面所成的角最大時(shí),點(diǎn)與點(diǎn)重合,在中,,∴,即直線與平面所成的最大角為,∴④不正確,故答案為:①②③.【點(diǎn)睛】本題考查立體幾何基本關(guān)系的應(yīng)用,線面垂直的性質(zhì)及判定、錐體體積、外接球半徑求解,線面角的求解,屬于中檔題三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析【解析】
(1)根據(jù)橢圓的定義可得,將代入橢圓方程,即可求得的值,求得橢圓方程;(2)設(shè)直線的方程,代入橢圓方程,求得直線和的方程,求得和的橫坐標(biāo),表示出,根據(jù)韋達(dá)定理即可求證為定值.【詳解】(1)因?yàn)椋蓹E圓的定義得,,點(diǎn)在橢圓上,代入橢圓方程,解得,所以的方程為;(2)證明:設(shè),,直線的斜率為,設(shè)直線的方程為,聯(lián)立方程組,消去,整理得,所以,,直線的直線方程為,令,則,同理,所以:,代入整理得,所以為定值.【點(diǎn)睛】本小題主要考查橢圓標(biāo)準(zhǔn)方程的求法,考查直線和橢圓的位置關(guān)系,考查橢圓中的定值問(wèn)題,屬于中檔題.18、(1)或;(2)證明見(jiàn)解析,定點(diǎn)【解析】
(1)設(shè),由題意可知,對(duì)的正負(fù)分情況討論,從而求得動(dòng)點(diǎn)的軌跡的方程;(2)設(shè)其方程為,與拋物線方程聯(lián)立,利用韋達(dá)定理得到,所以,所以直線的方程可表示為,即,所以直線恒過(guò)定點(diǎn).【詳解】(1)設(shè),動(dòng)點(diǎn)到定點(diǎn)的距離比到軸的距離多,,時(shí),解得,時(shí),解得.動(dòng)點(diǎn)的軌跡的方程為或(2)證明:如圖,設(shè),,由題意得(否則)且,所以直線的斜率存在,設(shè)其方程為,將與聯(lián)立消去,得,由韋達(dá)定理知,,①顯然,,,,將①式代入上式整理化簡(jiǎn)可得:,所以,此時(shí),直線的方程可表示為,即,所以直線恒過(guò)定點(diǎn).【點(diǎn)睛】本題主要考查了動(dòng)點(diǎn)軌跡,考查了直線與拋物線的綜合,是中檔題.19、(1):,直線:;(2).【解析】
(1)由消參法把參數(shù)方程化為普通方程,再由公式進(jìn)行直角坐標(biāo)方程與極坐標(biāo)方程的互化;(2)由極徑的定義可直接把代入曲線和直線的極坐標(biāo)方程,求出極徑,把比值化為的三角函數(shù),從而可得最大值、【詳解】(1)消去參數(shù)可得曲線的普通方程是,即,代入得,即,∴曲線的極坐標(biāo)方程是;由,化為直角坐標(biāo)方程為.(2)設(shè),則,,,當(dāng)時(shí),取得最大值為.【點(diǎn)睛】本題考查參數(shù)方程與普通方程的互化,考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,掌握公式可輕松自如進(jìn)行極坐標(biāo)方程與直角坐標(biāo)方程的互化.20、(1)見(jiàn)解析;(2)【解析】
(1)不等式等價(jià)于,設(shè),利用導(dǎo)數(shù)可證恒成立,從而原不等式成立.(2)由題設(shè)條件可得在上有兩個(gè)不同零點(diǎn),且,利用導(dǎo)數(shù)討論的單調(diào)性后可得其最小值,結(jié)合前述的集合的包含關(guān)系可得的取值范圍.【詳解】(1)設(shè),則,當(dāng)時(shí),由,所以在上是減函數(shù),所以,故.因?yàn)?,所以,所以?dāng)時(shí),.(2)由(1)當(dāng)時(shí),;任意,存在和使成立,所以在上有兩個(gè)不同零點(diǎn),且,(1)當(dāng)時(shí),在上為減函數(shù),不合題意;(2)當(dāng)時(shí),,由題意知在上不單調(diào),所以,即,當(dāng)時(shí),,時(shí),,所以在上遞減,在上遞增,所以,解得,因?yàn)?,所以成立,下面證明存在,使得,取,先證明,即證,令,則在時(shí)恒成立,所以成立,因?yàn)?,所以時(shí)命題成立.因?yàn)椋?故實(shí)數(shù)的最小值為.【點(diǎn)睛】本題考查導(dǎo)數(shù)在不等式恒成立、等式能成立中的應(yīng)用,前者注意將欲證不等式合理變形,轉(zhuǎn)化為容易證明的新不等式,后者需根據(jù)等式能成立的特點(diǎn)確定出函數(shù)應(yīng)該具有的性質(zhì),再利用導(dǎo)數(shù)研究該性質(zhì),本題屬于難題.21、(1),;(2).【解析】
(1)令求出的值,然后由,得出,然后檢驗(yàn)是否符合在時(shí)的表達(dá)式,即可得出數(shù)列的通項(xiàng)公式,并設(shè)數(shù)列的公比為,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年浙教新版選修2化學(xué)上冊(cè)月考試卷含答案283
- 2024年浙教新版七年級(jí)英語(yǔ)下冊(cè)月考試卷241
- 2025年高考化學(xué)復(fù)習(xí)熱搜題速遞之離子反應(yīng)(2024年7月)
- 奧特曼動(dòng)畫(huà)制作課程設(shè)計(jì)
- 2024年粵教版七年級(jí)數(shù)學(xué)上冊(cè)月考試卷含答案489
- 機(jī)設(shè)設(shè)計(jì)課程設(shè)計(jì)手冊(cè)
- 2020-2021學(xué)年江蘇省南京市鼓樓區(qū)一年級(jí)上冊(cè)數(shù)學(xué)期中試題及答案
- 液壓元件課程設(shè)計(jì)摘要
- 2024年智能家居產(chǎn)業(yè)有限合伙企業(yè)投資協(xié)議3篇
- 液氨蒸發(fā)器課程設(shè)計(jì)
- 財(cái)務(wù)總監(jiān)績(jī)效考核表
- 腎穿刺的適應(yīng)癥及圍術(shù)期管理考核評(píng)分表
- 數(shù)字孿生水利工程建設(shè)技術(shù)導(dǎo)則(試行)
- 福費(fèi)廷業(yè)務(wù)流程
- 地下室基坑開(kāi)挖及邊坡支護(hù)方案土釘墻 噴錨支護(hù)
- 初中畢業(yè)證書(shū)怎么查詢電子版
- 垃圾焚燒發(fā)電廠消防系統(tǒng)安裝施工方案
- 工藝管廊架施工方案
- GB/T 42449-2023系統(tǒng)與軟件工程功能規(guī)模測(cè)量IFPUG方法
- 酒店裝修工程預(yù)算表EXCEL模板(推薦)
- 2023行政執(zhí)法人員考試題庫(kù)及答案
評(píng)論
0/150
提交評(píng)論