版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省三明市普通高中2025屆高三最后一模數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若將函數(shù)的圖象上各點橫坐標縮短到原來的(縱坐標不變)得到函數(shù)的圖象,則下列說法正確的是()A.函數(shù)在上單調遞增 B.函數(shù)的周期是C.函數(shù)的圖象關于點對稱 D.函數(shù)在上最大值是12.已知F是雙曲線(k為常數(shù))的一個焦點,則點F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.23.已知函數(shù)()的部分圖象如圖所示.則()A. B.C. D.4.將4名大學生分配到3個鄉(xiāng)鎮(zhèn)去當村官,每個鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案種數(shù)是()A.18種 B.36種 C.54種 D.72種5.過雙曲線的右焦點F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經過雙曲線C的左頂點,則雙曲線C的離心率為()A. B. C.2 D.6.設命題:,,則為A., B.,C., D.,7.若復數(shù)(為虛數(shù)單位),則()A. B. C. D.8.已知x,y滿足不等式,且目標函數(shù)z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]9.若函數(shù)的圖象經過點,則函數(shù)圖象的一條對稱軸的方程可以為()A. B. C. D.10.若復數(shù)是純虛數(shù),則實數(shù)的值為()A.或 B. C. D.或11.數(shù)學中有許多形狀優(yōu)美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個結論:①曲線有四條對稱軸;②曲線上的點到原點的最大距離為;③曲線第一象限上任意一點作兩坐標軸的垂線與兩坐標軸圍成的矩形面積最大值為;④四葉草面積小于.其中,所有正確結論的序號是()A.①② B.①③ C.①③④ D.①②④12.一個正三角形的三個頂點都在雙曲線的右支上,且其中一個頂點在雙曲線的右頂點,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)已知,且,則的值是____________.14.設集合,,則____________.15.對定義在上的函數(shù),如果同時滿足以下兩個條件:(1)對任意的總有;(2)當,,時,總有成立.則稱函數(shù)稱為G函數(shù).若是定義在上G函數(shù),則實數(shù)a的取值范圍為________.16.已知直線與圓心為的圓相交于兩點,且,則實數(shù)的值為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(2)求曲線上的點到直線距離的最小值和最大值.18.(12分)傳染病的流行必須具備的三個基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個環(huán)節(jié)必須同時存在,方能構成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應該佩戴口罩.某地區(qū)已經出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識和防控情況,用分層抽樣的方法從全體居民中抽出一個容量為100的樣本,統(tǒng)計樣本中每個人出行是否會佩戴口罩的情況,得到下面列聯(lián)表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認為是否會佩戴口罩出行的行為與年齡有關?(2)用樣本估計總體,若從該地區(qū)出行不戴口罩的居民中隨機抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82819.(12分)已知橢圓:的兩個焦點是,,在橢圓上,且,為坐標原點,直線與直線平行,且與橢圓交于,兩點.連接、與軸交于點,.(1)求橢圓的標準方程;(2)求證:為定值.20.(12分)在中,角所對的邊分別是,且.(1)求;(2)若,求.21.(12分)隨著現(xiàn)代社會的發(fā)展,我國對于環(huán)境保護越來越重視,企業(yè)的環(huán)保意識也越來越強.現(xiàn)某大型企業(yè)為此建立了5套環(huán)境監(jiān)測系統(tǒng),并制定如下方案:每年企業(yè)的環(huán)境監(jiān)測費用預算定為1200萬元,日常全天候開啟3套環(huán)境監(jiān)測系統(tǒng),若至少有2套系統(tǒng)監(jiān)測出排放超標,則立即檢查污染源處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測出排放超標,則立即同時啟動另外2套系統(tǒng)進行1小時的監(jiān)測,且后啟動的這2套監(jiān)測系統(tǒng)中只要有1套系統(tǒng)監(jiān)測出排放超標,也立即檢查污染源處理系統(tǒng).設每個時間段(以1小時為計量單位)被每套系統(tǒng)監(jiān)測出排放超標的概率均為,且各個時間段每套系統(tǒng)監(jiān)測出排放超標情況相互獨立.(1)當時,求某個時間段需要檢查污染源處理系統(tǒng)的概率;(2)若每套環(huán)境監(jiān)測系統(tǒng)運行成本為300元/小時(不啟動則不產生運行費用),除運行費用外,所有的環(huán)境監(jiān)測系統(tǒng)每年的維修和保養(yǎng)費用需要100萬元.現(xiàn)以此方案實施,問該企業(yè)的環(huán)境監(jiān)測費用是否會超過預算(全年按9000小時計算)?并說明理由.22.(10分)在極坐標系中,曲線的極坐標方程為,直線的極坐標方程為,設與交于、兩點,中點為,的垂直平分線交于、.以為坐標原點,極軸為軸的正半軸建立直角坐標系.(1)求的直角坐標方程與點的直角坐標;(2)求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)三角函數(shù)伸縮變換特點可得到解析式;利用整體對應的方式可判斷出在上單調遞增,正確;關于點對稱,錯誤;根據(jù)正弦型函數(shù)最小正周期的求解可知錯誤;根據(jù)正弦型函數(shù)在區(qū)間內值域的求解可判斷出最大值無法取得,錯誤.【詳解】將橫坐標縮短到原來的得:當時,在上單調遞增在上單調遞增,正確;的最小正周期為:不是的周期,錯誤;當時,,關于點對稱,錯誤;當時,此時沒有最大值,錯誤.本題正確選項:【點睛】本題考查正弦型函數(shù)的性質,涉及到三角函數(shù)的伸縮變換、正弦型函數(shù)周期性、單調性和對稱性、正弦型函數(shù)在一段區(qū)間內的值域的求解;關鍵是能夠靈活應用整體對應的方式,通過正弦函數(shù)的圖象來判斷出所求函數(shù)的性質.2、D【解析】
分析可得,再去絕對值化簡成標準形式,進而根據(jù)雙曲線的性質求解即可.【詳解】當時,等式不是雙曲線的方程;當時,,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎題.3、C【解析】
由圖象可知,可解得,利用三角恒等變換化簡解析式可得,令,即可求得.【詳解】依題意,,即,解得;因為所以,當時,.故選:C.【點睛】本題主要考查了由三角函數(shù)的圖象求解析式和已知函數(shù)值求自變量,考查三角恒等變換在三角函數(shù)化簡中的應用,難度一般.4、B【解析】
把4名大學生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn)即得.【詳解】把4名大學生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn),則不同的分配方案有種.故選:.【點睛】本題考查排列組合,屬于基礎題.5、C【解析】
由得F是弦AB的中點.進而得AB垂直于x軸,得,再結合關系求解即可【詳解】因為,所以F是弦AB的中點.且AB垂直于x軸.因為以AB為直徑的圓經過雙曲線C的左頂點,所以,即,則,故.故選:C【點睛】本題是對雙曲線的漸近線以及離心率的綜合考查,是考查基本知識,屬于基礎題.6、D【解析】
直接利用全稱命題的否定是特稱命題寫出結果即可.【詳解】因為全稱命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.【點睛】本題考查命題的否定,特稱命題與全稱命題的否定關系,是基礎題.7、B【解析】
根據(jù)復數(shù)的除法法則計算,由共軛復數(shù)的概念寫出.【詳解】,,故選:B【點睛】本題主要考查了復數(shù)的除法計算,共軛復數(shù)的概念,屬于容易題.8、B【解析】
作出可行域,對t進行分類討論分析目標函數(shù)的最大值,即可求解.【詳解】畫出不等式組所表示的可行域如圖△AOB當t≤2時,可行域即為如圖中的△OAM,此時目標函數(shù)z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時可知目標函數(shù)Z=9x+6y在的交點()處取得最大值,此時Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點睛】此題考查線性規(guī)劃,根據(jù)可行域結合目標函數(shù)的最大值的取值范圍求參數(shù)的取值范圍,涉及分類討論思想,關鍵在于熟練掌握截距型目標函數(shù)的最大值最優(yōu)解的處理辦法.9、B【解析】
由點求得的值,化簡解析式,根據(jù)三角函數(shù)對稱軸的求法,求得的對稱軸,由此確定正確選項.【詳解】由題可知.所以令,得令,得故選:B【點睛】本小題主要考查根據(jù)三角函數(shù)圖象上點的坐標求參數(shù),考查三角恒等變換,考查三角函數(shù)對稱軸的求法,屬于中檔題.10、C【解析】試題分析:因為復數(shù)是純虛數(shù),所以且,因此注意不要忽視虛部不為零這一隱含條件.考點:純虛數(shù)11、C【解析】
①利用之間的代換判斷出對稱軸的條數(shù);②利用基本不等式求解出到原點的距離最大值;③將面積轉化為的關系式,然后根據(jù)基本不等式求解出最大值;④根據(jù)滿足的不等式判斷出四葉草與對應圓的關系,從而判斷出面積是否小于.【詳解】①:當變?yōu)闀r,不變,所以四葉草圖象關于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關于軸對稱;綜上可知:有四條對稱軸,故正確;②:因為,所以,所以,所以,取等號時,所以最大距離為,故錯誤;③:設任意一點,所以圍成的矩形面積為,因為,所以,所以,取等號時,所以圍成矩形面積的最大值為,故正確;④:由②可知,所以四葉草包含在圓的內部,因為圓的面積為:,所以四葉草的面積小于,故正確.故選:C.【點睛】本題考查曲線與方程的綜合運用,其中涉及到曲線的對稱性分析以及基本不等式的運用,難度較難.分析方程所表示曲線的對稱性,可通過替換方程中去分析證明.12、D【解析】
因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線可解得.【詳解】因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線方程得:,即,由得.故選:.【點睛】本題考查了雙曲線的性質,意在考查學生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由于,且,則,得,則.14、【解析】
先解不等式,再求交集的定義求解即可.【詳解】由題,因為,解得,即,則,故答案為:【點睛】本題考查集合的交集運算,考查解一元二次不等式.15、【解析】
由不等式恒成立問題采用分離變量最值法:對任意的恒成立,解得,又在,恒成立,即,所以,從而可得.【詳解】因為是定義在上G函數(shù),所以對任意的總有,則對任意的恒成立,解得,當時,又因為,,時,總有成立,即恒成立,即恒成立,又此時的最小值為,即恒成立,又因為解得.故答案為:【點睛】本題是一道函數(shù)新定義題目,考查了不等式恒成立求參數(shù)的取值范圍,考查了學生分析理解能力,屬于中檔題.16、0或6【解析】
計算得到圓心,半徑,根據(jù)得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.【點睛】本題考查了根據(jù)直線和圓的位置關系求參數(shù),意在考查學生的計算能力和轉化能力。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)最大值;最小值.【解析】
(1)結合極坐標和直角坐標的互化公式可得;(2)利用參數(shù)方程,求解點到直線的距離公式,結合三角函數(shù)知識求解最值.【詳解】解:(1)因為,代入,可得直線的直角坐標方程為.(2)曲線上的點到直線的距離,其中,.故曲線上的點到直線距離的最大值,曲線上的點到直線的距離的最小值.【點睛】本題主要考查極坐標和直角坐標的轉化及最值問題,橢圓上的點到直線的距離的最值求解優(yōu)先考慮參數(shù)方法,側重考查數(shù)學運算的核心素養(yǎng).18、(1)有的把握認為是否戴口罩出行的行為與年齡有關.(2)【解析】
(1)根據(jù)列聯(lián)表和獨立性檢驗的公式計算出觀測值,從而由參考數(shù)據(jù)作出判斷.(2)因為樣本中出行不戴口罩的居民有30人,其中年輕人有10人,用樣本估計總體,則出行不戴口罩的年輕人的概率為,是老年人的概率為.根據(jù)獨立重復事件的概率公式即可求得結果.【詳解】(1)由題意可知,有的把握認為是否戴口罩出行的行為與年齡有關.(2)由樣本估計總體,出行不戴口罩的年輕人的概率為,是老年人的概率為.人未戴口罩,恰有2人是青年人的概率.【點睛】本題主要考查獨立性檢驗及獨立重復事件的概率求法,難度一般.19、(1)(2)證明見解析【解析】
(1)根據(jù)橢圓的定義可得,將代入橢圓方程,即可求得的值,求得橢圓方程;(2)設直線的方程,代入橢圓方程,求得直線和的方程,求得和的橫坐標,表示出,根據(jù)韋達定理即可求證為定值.【詳解】(1)因為,由橢圓的定義得,,點在橢圓上,代入橢圓方程,解得,所以的方程為;(2)證明:設,,直線的斜率為,設直線的方程為,聯(lián)立方程組,消去,整理得,所以,,直線的直線方程為,令,則,同理,所以:,代入整理得,所以為定值.【點睛】本小題主要考查橢圓標準方程的求法,考查直線和橢圓的位置關系,考查橢圓中的定值問題,屬于中檔題.20、(1)(2)【解析】
(1)根據(jù)正弦定理到,得到答案.(2)計算,再利用余弦定理計算得到答案.【詳解】(1)由,可得,因為,所以,所以.(2),又因為,所以.因為,所以,即.【點睛】本題考查了正弦定理和余弦定理,意在考查學生的計算能力.21、(1);(2)不會超過預算,理由見解析【解析】
(1)求出某個時間段在開啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個時間段在需要開啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為,可得某個時間段需要檢查污染源處理系統(tǒng)的概率;(2)設某個時間段環(huán)境監(jiān)測系統(tǒng)的運行費用為元,則的可能取值為900,150
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 信任機制下的供應鏈管理創(chuàng)新-洞察分析
- 溫病方藥藥理研究綜述-洞察分析
- 《混凝土工程計算題》課件
- 輿論引導政策分析-洞察分析
- 醫(yī)院消防安全年終工作總結范文(7篇)
- 《工程事故分析及工》課件
- 《砌體施工亮點》課件
- 創(chuàng)新教育理念在小學科學教學中的實踐
- 以互動為基礎的家庭教育新模式探索
- 創(chuàng)新與責任并重打造未來辦公室的新模式
- 《我的心兒怦怦跳》優(yōu)秀課件
- 公積金提取單身聲明
- 大型設備的吊裝技術課件
- 臨床醫(yī)學概論知識點匯總
- 《讓學生看見你愛》心得體會
- 專利法全套ppt課件(完整版)
- GB∕T 9286-2021 色漆和清漆 劃格試驗
- 環(huán)境監(jiān)測所需各類原始記錄填寫格式模板參考模板范本
- 2022版義務教育語文課程標準(2022版含新增和修訂部分)
- 微型消防站火災處理流程圖
- 高中語文 必修上 第七單元“自然情懷”單元 教學設計 “天地大美生命超越”
評論
0/150
提交評論