版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
丹東市重點中學(xué)2025屆高考數(shù)學(xué)全真模擬密押卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若函數(shù)的極大值點從小到大依次記為,并記相應(yīng)的極大值為,則的值為()A. B. C. D.2.已知函數(shù),將函數(shù)的圖象向左平移個單位長度后,所得到的圖象關(guān)于軸對稱,則的最小值是()A. B. C. D.3.函數(shù)()的圖象的大致形狀是()A. B. C. D.4.甲在微信群中發(fā)了一個6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則乙獲得“最佳手氣”(即乙領(lǐng)到的錢數(shù)多于其他任何人)的概率是()A. B. C. D.5.如圖在一個的二面角的棱有兩個點,線段分別在這個二面角的兩個半平面內(nèi),且都垂直于棱,且,則的長為()A.4 B. C.2 D.6.已知菱形的邊長為2,,則()A.4 B.6 C. D.7.設(shè)等比數(shù)列的前項和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要8.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.9.五名志愿者到三個不同的單位去進行幫扶,每個單位至少一人,則甲、乙兩人不在同一個單位的概率為()A. B. C. D.10.已知,則下列說法中正確的是()A.是假命題 B.是真命題C.是真命題 D.是假命題11.在中,,,,則邊上的高為()A. B.2 C. D.12.設(shè)分別為雙曲線的左、右焦點,過點作圓的切線,與雙曲線的左、右兩支分別交于點,若,則雙曲線漸近線的斜率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正方形的邊長為2,圓內(nèi)切于正方形,為圓的一條動直徑,點為正方形邊界上任一點,則的取值范圍是______.14.某校名學(xué)生參加軍事冬令營活動,活動期間各自扮演一名角色進行分組游戲,角色按級別從小到大共種,分別為士兵、排長、連長、營長、團長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級別連續(xù)的個不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.15.已知,則_____.16.若變量,滿足約束條件則的最大值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點.(1)求證:平面平面;(2)點在線段上,且,求平面與平面所成的銳二面角的余弦值.18.(12分)如圖,在四棱錐中,底面是矩形,是的中點,平面,且,.()求與平面所成角的正弦.()求二面角的余弦值.19.(12分)等比數(shù)列中,.(Ⅰ)求的通項公式;(Ⅱ)記為的前項和.若,求.20.(12分)已知拋物線,焦點為,直線交拋物線于兩點,交拋物線的準線于點,如圖所示,當(dāng)直線經(jīng)過焦點時,點恰好是的中點,且.(1)求拋物線的方程;(2)點是原點,設(shè)直線的斜率分別是,當(dāng)直線的縱截距為1時,有數(shù)列滿足,設(shè)數(shù)列的前n項和為,已知存在正整數(shù)使得,求m的值.21.(12分)已知函數(shù)是自然對數(shù)的底數(shù).(1)若,討論的單調(diào)性;(2)若有兩個極值點,求的取值范圍,并證明:.22.(10分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若,證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
對此分段函數(shù)的第一部分進行求導(dǎo)分析可知,當(dāng)時有極大值,而后一部分是前一部分的定義域的循環(huán),而值域則是每一次前面兩個單位長度定義域的值域的2倍,故此得到極大值點的通項公式,且相應(yīng)極大值,分組求和即得【詳解】當(dāng)時,,顯然當(dāng)時有,,∴經(jīng)單調(diào)性分析知為的第一個極值點又∵時,∴,,,…,均為其極值點∵函數(shù)不能在端點處取得極值∴,,∴對應(yīng)極值,,∴故選:C【點睛】本題考查基本函數(shù)極值的求解,從函數(shù)表達式中抽離出相應(yīng)的等差數(shù)列和等比數(shù)列,最后分組求和,要求學(xué)生對數(shù)列和函數(shù)的熟悉程度高,為中檔題2、A【解析】
化簡為,求出它的圖象向左平移個單位長度后的圖象的函數(shù)表達式,利用所得到的圖象關(guān)于軸對稱列方程即可求得,問題得解。【詳解】函數(shù)可化為:,將函數(shù)的圖象向左平移個單位長度后,得到函數(shù)的圖象,又所得到的圖象關(guān)于軸對稱,所以,解得:,即:,又,所以.故選:A.【點睛】本題主要考查了兩角和的正弦公式及三角函數(shù)圖象的平移、性質(zhì)等知識,考查轉(zhuǎn)化能力,屬于中檔題。3、C【解析】
對x分類討論,去掉絕對值,即可作出圖象.【詳解】故選C.【點睛】識圖常用的方法(1)定性分析法:通過對問題進行定性的分析,從而得出圖象的上升(或下降)的趨勢,利用這一特征分析解決問題;(2)定量計算法:通過定量的計算來分析解決問題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關(guān)函數(shù)模型,利用這一函數(shù)模型來分析解決問題.4、B【解析】
將所有可能的情況全部枚舉出來,再根據(jù)古典概型的方法求解即可.【詳解】設(shè)乙,丙,丁分別領(lǐng)到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個,其中符合乙獲得“最佳手氣”的有3個,故所求概率為,故選:B.【點睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎(chǔ)題型.5、A【解析】
由,兩邊平方后展開整理,即可求得,則的長可求.【詳解】解:,,,,,,.,,故選:.【點睛】本題考查了向量的多邊形法則、數(shù)量積的運算性質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了空間想象能力,考查了推理能力與計算能力,屬于中檔題.6、B【解析】
根據(jù)菱形中的邊角關(guān)系,利用余弦定理和數(shù)量積公式,即可求出結(jié)果.【詳解】如圖所示,菱形形的邊長為2,,∴,∴,∴,且,∴,故選B.【點睛】本題主要考查了平面向量的數(shù)量積和余弦定理的應(yīng)用問題,屬于基礎(chǔ)題..7、A【解析】
首先根據(jù)等比數(shù)列分別求出滿足,的基本量,根據(jù)基本量的范圍即可確定答案.【詳解】為等比數(shù)列,若成立,有,因為恒成立,故可以推出且,若成立,當(dāng)時,有,當(dāng)時,有,因為恒成立,所以有,故可以推出,,所以“”是“”的充分不必要條件.故選:A.【點睛】本題主要考查了等比數(shù)列基本量的求解,充分必要條件的集合關(guān)系,屬于基礎(chǔ)題.8、C【解析】
根據(jù)三視圖,可得該幾何體是一個三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結(jié)論.【詳解】如圖所示:由三視圖得:該幾何體是一個三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C【點睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運算求解的能力,屬于中檔題.9、D【解析】
三個單位的人數(shù)可能為2,2,1或3,1,1,求出甲、乙兩人在同一個單位的概率,利用互為對立事件的概率和為1即可解決.【詳解】由題意,三個單位的人數(shù)可能為2,2,1或3,1,1;基本事件總數(shù)有種,若為第一種情況,且甲、乙兩人在同一個單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個單位,共有種,故甲、乙兩人在同一個單位的概率為,故甲、乙兩人不在同一個單位的概率為.故選:D.【點睛】本題考查古典概型的概率公式的計算,涉及到排列與組合的應(yīng)用,在正面情況較多時,可以先求其對立事件,即甲、乙兩人在同一個單位的概率,本題有一定難度.10、D【解析】
舉例判斷命題p與q的真假,再由復(fù)合命題的真假判斷得答案.【詳解】當(dāng)時,故命題為假命題;記f(x)=ex﹣x的導(dǎo)數(shù)為f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上遞減,在(0,+∞)上遞增,∴f(x)>f(0)=1>0,即,故命題為真命題;∴是假命題故選D【點睛】本題考查復(fù)合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對函數(shù)的圖象與性質(zhì),是基礎(chǔ)題.11、C【解析】
結(jié)合正弦定理、三角形的內(nèi)角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【點睛】本小題主要考查正弦定理解三角形,考查三角形的內(nèi)角和定理、兩角和的正弦公式,屬于中檔題.12、C【解析】
如圖所示:切點為,連接,作軸于,計算,,,,根據(jù)勾股定理計算得到答案.【詳解】如圖所示:切點為,連接,作軸于,,故,在中,,故,故,,根據(jù)勾股定理:,解得.故選:.【點睛】本題考查了雙曲線的漸近線斜率,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)向量關(guān)系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:【點睛】此題考查求平面向量數(shù)量積的取值范圍,涉及基本運算,關(guān)鍵在于恰當(dāng)?shù)貙ο蛄窟M行轉(zhuǎn)換,便于計算解題.14、【解析】
對新加入的學(xué)生所扮演的角色進行分類討論,分析各種情況下個學(xué)生所扮演的角色的分組,綜合可得出結(jié)論.【詳解】依題意,名學(xué)生分成組,則一定是個人組和個人組.①若新加入的學(xué)生是士兵,則可以將這個人分組如下;名士兵;士兵、排長、連長各名;營長、團長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學(xué)生可以是士兵,由對稱性可知也可以是司令;②若新加入的學(xué)生是排長,則可以將這個人分組如下:名士兵;連長、營長、團長各名;旅長、師長、軍長各名;名司令;名排長.所以新加入的學(xué)生可以是排長,由對稱性可知也可以是軍長;③若新加入的學(xué)生是連長,則可以將這個人分組如下:名士兵;士兵、排長、連長各名;連長、營長、團長各名;旅長、師長、軍長各名;名司令.所以新加入的學(xué)生可以是連長,由對稱性可知也可以是師長;④若新加入的學(xué)生是營長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;營長、團長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學(xué)生可以是營長,由對稱性可知也可以是旅長;⑤若新加入的學(xué)生是團長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;旅長、師長、軍長各名;名司令;名團長.所以新加入的學(xué)生可以是團長.綜上所述,新加入學(xué)生可以扮演種角色.故答案為:.【點睛】本題考查分類計數(shù)原理的應(yīng)用,解答的關(guān)鍵就是對新加入的學(xué)生所扮演的角色進行分類討論,屬于中等題.15、【解析】
對原方程兩邊求導(dǎo),然后令求得表達式的值.【詳解】對等式兩邊求導(dǎo),得,令,則.【點睛】本小題主要考查二項式展開式,考查利用導(dǎo)數(shù)轉(zhuǎn)化已知條件,考查賦值法,屬于中檔題.16、7【解析】
畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合,即可容易求得目標函數(shù)的最大值.【詳解】作出不等式組所表示的平面區(qū)域,如下圖陰影部分所示.觀察可知,當(dāng)直線過點時,有最大值,.故答案為:.【點睛】本題考查二次不等式組與平面區(qū)域、線性規(guī)劃,主要考查推理論證能力以及數(shù)形結(jié)合思想,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)根據(jù)等邊三角形的性質(zhì)證得,根據(jù)面面垂直的性質(zhì)定理,證得底面,由此證得,結(jié)合證得平面,由此證得:平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出平面與平面所成的銳二面角的余弦值.【詳解】(1)證明:∵為等邊三角形,為的中點,∴∵平面底面,平面底面,∴底面平面,∴又由題意可知為正方形,又,∴平面平面,∴平面平面(2)如圖建立空間直角坐標系,則,,,由已知,得,設(shè)平面的法向量為,則令,則,∴由(1)知平面的法向量可取為∴∴平面與平面所成的銳二面角的余弦值為.【點睛】本小題主要考查面面垂直的判定定理和性質(zhì)定理,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1).(2).【解析】分析:(1)直接建立空間直角坐標系,然后求出面的法向量和已知線的向量,再結(jié)合向量的夾角公式求解即可;(2)先分別得出兩個面的法向量,然后根據(jù)向量交角公式求解即可.詳解:()∵是矩形,∴,又∵平面,∴,,即,,兩兩垂直,∴以為原點,,,分別為軸,軸,軸建立如圖空間直角坐標系,由,,得,,,,,,則,,,設(shè)平面的一個法向量為,則,即,令,得,,∴,∴,故與平面所成角的正弦值為.()由()可得,設(shè)平面的一個法向量為,則,即,令,得,,∴,∴,故二面角的余弦值為.點睛:考查空間立體幾何的線面角,二面角問題,一般直接建立坐標系,結(jié)合向量夾角公式求解即可,但要注意坐標的正確性,坐標錯則結(jié)果必錯,務(wù)必細心,屬于中檔題.19、(Ⅰ)或(Ⅱ)12【解析】
(1)先設(shè)數(shù)列的公比為,根據(jù)題中條件求出公比,即可得出通項公式;(2)根據(jù)(1)的結(jié)果,由等比數(shù)列的求和公式,即可求出結(jié)果.【詳解】(1)設(shè)數(shù)列的公比為,,,或.(2)時,,解得;時,,無正整數(shù)解;綜上所述.【點睛】本題主要考查等比數(shù)列,熟記等比數(shù)列的通項公式與求和公式即可,屬于基礎(chǔ)題型.20、(1)(2)【解析】
(1)設(shè)出直線的方程,再與拋物線聯(lián)立方程組,進而求得點的坐標,結(jié)合弦長即可求得拋物線的方程;(2)設(shè)直線的方程,運用韋達定理可得,可得之間的關(guān)系,再運用進行裂項,可求得,解不等式求得的值.【詳解】解:(1)設(shè)過拋物線焦點的直線方程為,與拋物線方程聯(lián)立得:,設(shè),所以,,,所以拋物線方程為(2)設(shè)直線方程為,,,,,,由得.【點睛】本題考查了直線與拋物線的關(guān)系,考查了韋
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幕墻工程招標文件案例
- 貨運三輪車交易協(xié)議
- 尿素采購協(xié)議合同
- 生產(chǎn)車間承包技術(shù)成果成果分配
- 幼兒園應(yīng)急安全措施保證
- 云計算系統(tǒng)服務(wù)合同
- 采購合同的分類介紹
- 招標文件與合同的銜接
- 出行安全我保障
- 采石場石塊銷售合約
- 派出所轄區(qū)矛盾糾紛風(fēng)險隱患研判材料
- 2006年度銀行業(yè)金融機構(gòu)信息科技風(fēng)險評價審計要點
- 新視野商務(wù)英語視聽說(上):第四版教學(xué)課件U9
- 十年了停下來思考
- 【論藥品犯罪的刑法規(guī)制7000字(論文)】
- 基于PLC的校園照明智能控制系統(tǒng)設(shè)計畢業(yè)設(shè)計論文
- 三句半專題教育課件
- 新冠肺炎核酸檢測報告英文版翻譯模板
- 2022年中考物理真題選及參考答案-電學(xué)計算題
- GB/T 14324-1993電容液位計
- 全員安全生產(chǎn)責(zé)任制培訓(xùn)
評論
0/150
提交評論