吉林省吉林市長春汽車經(jīng)濟(jì)開發(fā)區(qū)第六中學(xué)2025屆高三最后一模數(shù)學(xué)試題含解析_第1頁
吉林省吉林市長春汽車經(jīng)濟(jì)開發(fā)區(qū)第六中學(xué)2025屆高三最后一模數(shù)學(xué)試題含解析_第2頁
吉林省吉林市長春汽車經(jīng)濟(jì)開發(fā)區(qū)第六中學(xué)2025屆高三最后一模數(shù)學(xué)試題含解析_第3頁
吉林省吉林市長春汽車經(jīng)濟(jì)開發(fā)區(qū)第六中學(xué)2025屆高三最后一模數(shù)學(xué)試題含解析_第4頁
吉林省吉林市長春汽車經(jīng)濟(jì)開發(fā)區(qū)第六中學(xué)2025屆高三最后一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

吉林省吉林市長春汽車經(jīng)濟(jì)開發(fā)區(qū)第六中學(xué)2025屆高三最后一模數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則下列不等式正確的是()A. B.C. D.2.已知,若則實(shí)數(shù)的取值范圍是()A. B. C. D.3.設(shè),是兩條不同的直線,,是兩個不同的平面,給出下列四個命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個數(shù)為()A. B. C. D.4.若的展開式中的系數(shù)為150,則()A.20 B.15 C.10 D.255.如圖,在棱長為4的正方體中,E,F(xiàn),G分別為棱AB,BC,的中點(diǎn),M為棱AD的中點(diǎn),設(shè)P,Q為底面ABCD內(nèi)的兩個動點(diǎn),滿足平面EFG,,則的最小值為()A. B. C. D.6.已知復(fù)數(shù)滿足,則=()A. B.C. D.7.已知函數(shù),以下結(jié)論正確的個數(shù)為()①當(dāng)時(shí),函數(shù)的圖象的對稱中心為;②當(dāng)時(shí),函數(shù)在上為單調(diào)遞減函數(shù);③若函數(shù)在上不單調(diào),則;④當(dāng)時(shí),在上的最大值為1.A.1 B.2 C.3 D.48.設(shè)是等差數(shù)列的前n項(xiàng)和,且,則()A. B. C.1 D.29.秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個實(shí)例,若輸入的值為2,則輸出的值為A. B. C. D.10.己知拋物線的焦點(diǎn)為,準(zhǔn)線為,點(diǎn)分別在拋物線上,且,直線交于點(diǎn),,垂足為,若的面積為,則到的距離為()A. B. C.8 D.611.已知是雙曲線的左右焦點(diǎn),過的直線與雙曲線的兩支分別交于兩點(diǎn)(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.12.設(shè)分別是雙線的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),以為直徑的圓與該雙曲線的兩條漸近線分別交于兩點(diǎn)(位于軸右側(cè)),且四邊形為菱形,則該雙曲線的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓C:1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的焦距為2c,過C外一點(diǎn)P(c,2c)作線段PF1,PF2分別交橢圓C于點(diǎn)A、B,若|PA|=|AF1|,則_____.14.已知函數(shù),則曲線在處的切線斜率為________.15.若將函數(shù)的圖象沿軸向右平移個單位后所得的圖象與的圖象關(guān)于軸對稱,則的最小值為________________.16.在中,角所對的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(1)若,時(shí),在上單調(diào)遞減,求的取值范圍;(2)若,,,求證:當(dāng)時(shí),.18.(12分)如圖,在三棱柱中,平面ABC.(1)證明:平面平面(2)求二面角的余弦值.19.(12分)已知橢圓C:()的左、右焦點(diǎn)分別為,,離心率為,且過點(diǎn).(1)求橢圓C的方程;(2)過左焦點(diǎn)的直線l與橢圓C交于不同的A,B兩點(diǎn),若,求直線l的斜率k.20.(12分)已知橢圓的短軸的兩個端點(diǎn)分別為、,焦距為.(1)求橢圓的方程;(2)已知直線與橢圓有兩個不同的交點(diǎn)、,設(shè)為直線上一點(diǎn),且直線、的斜率的積為.證明:點(diǎn)在軸上.21.(12分)設(shè)函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.22.(10分)在開展學(xué)習(xí)強(qiáng)國的活動中,某校高三數(shù)學(xué)教師成立了黨員和非黨員兩個學(xué)習(xí)組,其中黨員學(xué)習(xí)組有4名男教師、1名女教師,非黨員學(xué)習(xí)組有2名男教師、2名女教師,高三數(shù)學(xué)組計(jì)劃從兩個學(xué)習(xí)組中隨機(jī)各選2名教師參加學(xué)校的挑戰(zhàn)答題比賽.(1)求選出的4名選手中恰好有一名女教師的選派方法數(shù);(2)記X為選出的4名選手中女教師的人數(shù),求X的概率分布和數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

利用特殊值代入法,作差法,排除不符合條件的選項(xiàng),得到符合條件的選項(xiàng).【詳解】已知,賦值法討論的情況:(1)當(dāng)時(shí),令,,則,,排除B、C選項(xiàng);(2)當(dāng)時(shí),令,,則,排除A選項(xiàng).故選:D.【點(diǎn)睛】比較大小通常采用作差法,本題主要考查不等式與不等關(guān)系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項(xiàng),得到符合條件的選項(xiàng),是一種簡單有效的方法,屬于中等題.2、C【解析】

根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因?yàn)椋杂薪?,即有解,所以,得,,所以,又因?yàn)?,所以,即,可化為,因?yàn)?,所以的解集包含,所以或,解得,故選:C【點(diǎn)睛】本題主要考查一元二次不等式的解法及集合的關(guān)系的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題,3、C【解析】

利用線線、線面、面面相應(yīng)的判定與性質(zhì)來解決.【詳解】如果兩條平行線中一條垂直于這個平面,那么另一條也垂直于這個平面知①正確;當(dāng)直線平行于平面與平面的交線時(shí)也有,,故②錯誤;若,則垂直平面內(nèi)以及與平面平行的所有直線,故③正確;若,則存在直線且,因?yàn)?,所以,從而,故④正確.故選:C.【點(diǎn)睛】本題考查空間中線線、線面、面面的位置關(guān)系,里面涉及到了相應(yīng)的判定定理以及性質(zhì)定理,是一道基礎(chǔ)題.4、C【解析】

通過二項(xiàng)式展開式的通項(xiàng)分析得到,即得解.【詳解】由已知得,故當(dāng)時(shí),,于是有,則.故選:C【點(diǎn)睛】本題主要考查二項(xiàng)式展開式的通項(xiàng)和系數(shù)問題,意在考查學(xué)生對這些知識的理解掌握水平.5、C【解析】

把截面畫完整,可得在上,由知在以為圓心1為半徑的四分之一圓上,利用對稱性可得的最小值.【詳解】如圖,分別取的中點(diǎn),連接,易證共面,即平面為截面,連接,由中位線定理可得,平面,平面,則平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方體中平面,從而有,∴,∴在以為圓心1為半徑的四分之一圓(圓在正方形內(nèi)的部分)上,顯然關(guān)于直線的對稱點(diǎn)為,,當(dāng)且僅當(dāng)共線時(shí)取等號,∴所求最小值為.故選:C.【點(diǎn)睛】本題考查空間距離的最小值問題,解題時(shí)作出正方體的完整截面求出點(diǎn)軌跡是第一個難點(diǎn),第二個難點(diǎn)是求出點(diǎn)軌跡,第三個難點(diǎn)是利用對稱性及圓的性質(zhì)求得最小值.6、B【解析】

利用復(fù)數(shù)的代數(shù)運(yùn)算法則化簡即可得到結(jié)論.【詳解】由,得,所以,.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.7、C【解析】

逐一分析選項(xiàng),①根據(jù)函數(shù)的對稱中心判斷;②利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;③先求函數(shù)的導(dǎo)數(shù),若滿足條件,則極值點(diǎn)必在區(qū)間;④利用導(dǎo)數(shù)求函數(shù)在給定區(qū)間的最值.【詳解】①為奇函數(shù),其圖象的對稱中心為原點(diǎn),根據(jù)平移知識,函數(shù)的圖象的對稱中心為,正確.②由題意知.因?yàn)楫?dāng)時(shí),,又,所以在上恒成立,所以函數(shù)在上為單調(diào)遞減函數(shù),正確.③由題意知,當(dāng)時(shí),,此時(shí)在上為增函數(shù),不合題意,故.令,解得.因?yàn)樵谏喜粏握{(diào),所以在上有解,需,解得,正確.④令,得.根據(jù)函數(shù)的單調(diào)性,在上的最大值只可能為或.因?yàn)?,,所以最大值?4,結(jié)論錯誤.故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,最值,意在考查基本的判斷方法,屬于基礎(chǔ)題型.8、C【解析】

利用等差數(shù)列的性質(zhì)化簡已知條件,求得的值.【詳解】由于等差數(shù)列滿足,所以,,.故選:C【點(diǎn)睛】本小題主要考查等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.9、C【解析】

由題意,模擬程序的運(yùn)行,依次寫出每次循環(huán)得到的,的值,當(dāng)時(shí),不滿足條件,跳出循環(huán),輸出的值.【詳解】解:初始值,,程序運(yùn)行過程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循環(huán),輸出的值為其中①②①—②得.故選:.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到,的值是解題的關(guān)鍵,屬于基礎(chǔ)題.10、D【解析】

作,垂足為,過點(diǎn)N作,垂足為G,設(shè),則,結(jié)合圖形可得,,從而可求出,進(jìn)而可求得,,由的面積即可求出,再結(jié)合為線段的中點(diǎn),即可求出到的距離.【詳解】如圖所示,作,垂足為,設(shè),由,得,則,.過點(diǎn)N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因?yàn)?,所以為線段的中點(diǎn),所以F到l的距離為.故選:D【點(diǎn)睛】本題主要考查拋物線的幾何性質(zhì)及平面幾何的有關(guān)知識,屬于中檔題.11、D【解析】

根據(jù)雙曲線的定義可得的邊長為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點(diǎn)距離用表示,然后用余弦定理建立關(guān)系式.12、B【解析】

由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【詳解】如圖,因?yàn)樗倪呅螢榱庑?,,所以為等邊三角形,,兩漸近線的斜率分別為和.故選:B【點(diǎn)睛】此題考查的是求雙曲線的漸近線方程,利用了數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)條件可得判斷OA∥PF2,且|PF2|=2|OA|,從而得到點(diǎn)A為橢圓上頂點(diǎn),則有b=c,解出B的坐標(biāo)即可得到比值.【詳解】因?yàn)閨PA|=|AF1|,所以點(diǎn)A是線段PF1的中點(diǎn),又因?yàn)辄c(diǎn)O為線段F1F2的中點(diǎn),所以O(shè)A∥PF2,且|PF2|=2|OA|,因?yàn)辄c(diǎn)P(c,2c),所以PF2⊥x軸,則|PF2|=2c,所以O(shè)A⊥x軸,則點(diǎn)A為橢圓上頂點(diǎn),所以|OA|=b,則2b=2c,所以b=c,ac,設(shè)B(c,m)(m>0),則,解得mc,所以|BF2|c,則.故答案為:2.【點(diǎn)睛】本題考查橢圓的基本性質(zhì),考查直線位置關(guān)系的判斷,方程思想,屬于中檔題.14、【解析】

求導(dǎo)后代入可構(gòu)造方程求得,即為所求斜率.【詳解】,,解得:,即在處的切線斜率為.故答案為:.【點(diǎn)睛】本題考查切線斜率的求解問題,考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.15、【解析】

由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖像的對稱性,求得的最小值.【詳解】解:將函數(shù)的圖象沿軸向右平移個單位長度,可得的圖象.根據(jù)圖象與的圖象關(guān)于軸對稱,可得,,,即時(shí),的最小值為.故答案為:.【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)圖像的對稱性,屬于基礎(chǔ)題.16、等腰三角形【解析】∵∴根據(jù)正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】

(1)在上單調(diào)遞減等價(jià)于在恒成立,分離參數(shù)即可解決.(2)先對求導(dǎo),化簡后根據(jù)零點(diǎn)存在性定理判斷唯一零點(diǎn)所在區(qū)間,構(gòu)造函數(shù)利用基本不等式求解即可.【詳解】(1),時(shí),,,∵在上單調(diào)遞減.∴,.令,,時(shí),;時(shí),,∴在上為減函數(shù),在上為增函數(shù).∴,∴.∴的取值范圍為.(2)若,,時(shí),,,令,顯然在上為增函數(shù).又,,∴有唯一零點(diǎn).且,時(shí),,;時(shí),,,∴在上為增函數(shù),在上為減函數(shù).∴.又,∴,,.∴.,.∴當(dāng)時(shí),.【點(diǎn)睛】此題考查函數(shù)定區(qū)間上單調(diào),和零點(diǎn)存在性定理等知識點(diǎn),難點(diǎn)為找到最值后的構(gòu)造函數(shù)求值域,屬于較難題目.18、(1)證明見解析(2)【解析】

(1)證明平面即平面平面得證;(2)分別以所在直線為x軸,y軸.軸,建立如圖所示的空間直角坐標(biāo)系C-xyz,再利用向量方法求二面角的余弦值.【詳解】(1)證明:因?yàn)槠矫鍭BC,所以因?yàn)?所以.即又.所以平面因?yàn)槠矫?所以平面平面(2)解:由題可得兩兩垂直,所以分別以所在直線為x軸,y軸.軸,建立如圖所示的空間直角坐標(biāo)系C-xyz,則,所以設(shè)平面的一個法向量為,由.得令,得又平面,所以平面的一個法向量為.所以二面角的余弦值為.【點(diǎn)睛】本題主要考查空間幾何位置關(guān)系的證明,考查二面角的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平.19、(1)(2)直線l的斜率為或【解析】

(1)根據(jù)已知列出方程組即可解得橢圓方程;(2)設(shè)直線方程,與橢圓方程聯(lián)立,轉(zhuǎn)化為,借助向量的數(shù)量積的坐標(biāo)表示,及韋達(dá)定理即可求得結(jié)果.【詳解】(1)由題意得解得故橢圓C的方程為.(2)直線l的方程為,設(shè),,則由方程組消去y得,,所以,,由,得,所以,又所以,即所以,因此,直線l的斜率為或.【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線和橢圓的位置關(guān)系,考查學(xué)生的計(jì)算求解能力,難度一般.20、(1);(2)見解析.【解析】

(1)由已知條件得出、的值,進(jìn)而可得出的值,由此可求得橢圓的方程;(2)設(shè)點(diǎn),可得,且,,求出直線的斜率,進(jìn)而可求得直線與的方程,將直線直線與的方程聯(lián)立,求出點(diǎn)的坐標(biāo),即可證得結(jié)論.【詳解】(1)由題設(shè),得,所以,即.故橢圓的方程為;(2)設(shè),則,,.所以直線的斜率為,因?yàn)橹本€、的斜率的積為,所以直線的斜率為.直線的方程為,直線的方程為.聯(lián)立,解得點(diǎn)的縱坐標(biāo)為.因?yàn)辄c(diǎn)在橢圓上,所以,則,所以點(diǎn)在軸上.【點(diǎn)睛】本題考查橢圓方程的求解,同時(shí)也考查了點(diǎn)在定直線的證明,考查計(jì)算能力與推理能力,屬于中等題.21、(1)(2)的遞減區(qū)間為和【解析】

(1)化簡函數(shù),代入,計(jì)算即可;(2)先利用正弦函數(shù)的圖象與性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,再結(jié)合即可求出.【詳解】(1),從而.(2)令.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論