黔南市重點(diǎn)中學(xué)2025屆高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第1頁(yè)
黔南市重點(diǎn)中學(xué)2025屆高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第2頁(yè)
黔南市重點(diǎn)中學(xué)2025屆高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第3頁(yè)
黔南市重點(diǎn)中學(xué)2025屆高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第4頁(yè)
黔南市重點(diǎn)中學(xué)2025屆高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

黔南市重點(diǎn)中學(xué)2025屆高考數(shù)學(xué)倒計(jì)時(shí)模擬卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),下列結(jié)論不正確的是()A.的圖像關(guān)于點(diǎn)中心對(duì)稱 B.既是奇函數(shù),又是周期函數(shù)C.的圖像關(guān)于直線對(duì)稱 D.的最大值是2.如圖,在矩形中的曲線分別是,的一部分,,,在矩形內(nèi)隨機(jī)取一點(diǎn),若此點(diǎn)取自陰影部分的概率為,取自非陰影部分的概率為,則()A. B. C. D.大小關(guān)系不能確定3.已知集合,定義集合,則等于()A. B.C. D.4.若集合,,則下列結(jié)論正確的是()A. B. C. D.5.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}6.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.7.對(duì)于函數(shù),若滿足,則稱為函數(shù)的一對(duì)“線性對(duì)稱點(diǎn)”.若實(shí)數(shù)與和與為函數(shù)的兩對(duì)“線性對(duì)稱點(diǎn)”,則的最大值為()A. B. C. D.8.已知雙曲線的左、右焦點(diǎn)分別為,圓與雙曲線在第一象限內(nèi)的交點(diǎn)為M,若.則該雙曲線的離心率為A.2 B.3 C. D.9.雙曲線C:(,)的離心率是3,焦點(diǎn)到漸近線的距離為,則雙曲線C的焦距為()A.3 B. C.6 D.10.某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A. B.4C. D.511.已知,則下列說(shuō)法中正確的是()A.是假命題 B.是真命題C.是真命題 D.是假命題12.已知集合A={y|y},B={x|y=lg(x﹣2x2)},則?R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)與的圖象上存在關(guān)于軸對(duì)稱的點(diǎn),則的取值范圍為_(kāi)____.14.若的展開(kāi)式中各項(xiàng)系數(shù)之和為32,則展開(kāi)式中x的系數(shù)為_(kāi)____15.函數(shù)在上的最小值和最大值分別是_____________.16.如圖,直線平面,垂足為,三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,在平面內(nèi),是直線上的動(dòng)點(diǎn),則點(diǎn)到平面的距離為_(kāi)______,點(diǎn)到直線的距離的最大值為_(kāi)______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程與曲線的直角坐標(biāo)方程;(2)若射線與和分別交于點(diǎn),求.18.(12分)設(shè)數(shù)列是等比數(shù)列,,已知,(1)求數(shù)列的首項(xiàng)和公比;(2)求數(shù)列的通項(xiàng)公式.19.(12分)已知矩陣不存在逆矩陣,且非零特低值對(duì)應(yīng)的一個(gè)特征向量,求的值.20.(12分)已知函數(shù),其中.(1)當(dāng)時(shí),求在的切線方程;(2)求證:的極大值恒大于0.21.(12分)已知.(1)已知關(guān)于的不等式有實(shí)數(shù)解,求的取值范圍;(2)求不等式的解集.22.(10分)在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為;直線l的參數(shù)方程為(t為參數(shù)).直線l與曲線C分別交于M,N兩點(diǎn).(1)寫(xiě)出曲線C的直角坐標(biāo)方程和直線l的普通方程;(2)若點(diǎn)P的極坐標(biāo)為,,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

通過(guò)三角函數(shù)的對(duì)稱性以及周期性,函數(shù)的最值判斷選項(xiàng)的正誤即可得到結(jié)果.【詳解】解:,正確;,為奇函數(shù),周期函數(shù),正確;,正確;D:,令,則,,,,則時(shí),或時(shí),即在上單調(diào)遞增,在和上單調(diào)遞減;且,,,故D錯(cuò)誤.故選:.【點(diǎn)睛】本題考查三角函數(shù)周期性和對(duì)稱性的判斷,利用導(dǎo)數(shù)判斷函數(shù)最值,屬于中檔題.2、B【解析】

先用定積分求得陰影部分一半的面積,再根據(jù)幾何概型概率公式可求得.【詳解】根據(jù)題意,陰影部分的面積的一半為:,于是此點(diǎn)取自陰影部分的概率為.又,故.故選B.【點(diǎn)睛】本題考查了幾何概型,定積分的計(jì)算以及幾何意義,屬于中檔題.3、C【解析】

根據(jù)定義,求出,即可求出結(jié)論.【詳解】因?yàn)榧希?,則,所以.故選:C.【點(diǎn)睛】本題考查集合的新定義運(yùn)算,理解新定義是解題的關(guān)鍵,屬于基礎(chǔ)題.4、D【解析】

由題意,分析即得解【詳解】由題意,故,故選:D【點(diǎn)睛】本題考查了元素和集合,集合和集合之間的關(guān)系,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.5、C【解析】

根據(jù)集合的并集、補(bǔ)集的概念,可得結(jié)果.【詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【點(diǎn)睛】本題考查的是集合并集,補(bǔ)集的概念,屬基礎(chǔ)題.6、A【解析】

設(shè),延長(zhǎng)至,使得,連,可證,得到(或補(bǔ)角)為所求的角,分別求出,解即可.【詳解】設(shè),延長(zhǎng)至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補(bǔ)角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.

故選:A.【點(diǎn)睛】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.7、D【解析】

根據(jù)已知有,可得,只需求出的最小值,根據(jù),利用基本不等式,得到的最小值,即可得出結(jié)論.【詳解】依題意知,與為函數(shù)的“線性對(duì)稱點(diǎn)”,所以,故(當(dāng)且僅當(dāng)時(shí)取等號(hào)).又與為函數(shù)的“線性對(duì)稱點(diǎn),所以,所以,從而的最大值為.故選:D.【點(diǎn)睛】本題以新定義為背景,考查指數(shù)函數(shù)的運(yùn)算和圖像性質(zhì)、基本不等式,理解新定義含義,正確求出的表達(dá)式是解題的關(guān)鍵,屬于中檔題.8、D【解析】

本題首先可以通過(guò)題意畫(huà)出圖像并過(guò)點(diǎn)作垂線交于點(diǎn),然后通過(guò)圓與雙曲線的相關(guān)性質(zhì)判斷出三角形的形狀并求出高的長(zhǎng)度,的長(zhǎng)度即點(diǎn)縱坐標(biāo),然后將點(diǎn)縱坐標(biāo)帶入圓的方程即可得出點(diǎn)坐標(biāo),最后將點(diǎn)坐標(biāo)帶入雙曲線方程即可得出結(jié)果?!驹斀狻扛鶕?jù)題意可畫(huà)出以上圖像,過(guò)點(diǎn)作垂線并交于點(diǎn),因?yàn)?,在雙曲線上,所以根據(jù)雙曲線性質(zhì)可知,,即,,因?yàn)閳A的半徑為,是圓的半徑,所以,因?yàn)?,,,,所以,三角形是直角三角形,因?yàn)?,所以,,即點(diǎn)縱坐標(biāo)為,將點(diǎn)縱坐標(biāo)帶入圓的方程中可得,解得,,將點(diǎn)坐標(biāo)帶入雙曲線中可得,化簡(jiǎn)得,,,,故選D?!军c(diǎn)睛】本題考查了圓錐曲線的相關(guān)性質(zhì),主要考察了圓與雙曲線的相關(guān)性質(zhì),考查了圓與雙曲線的綜合應(yīng)用,考查了數(shù)形結(jié)合思想,體現(xiàn)了綜合性,提高了學(xué)生的邏輯思維能力,是難題。9、A【解析】

根據(jù)焦點(diǎn)到漸近線的距離,可得,然后根據(jù),可得結(jié)果.【詳解】由題可知:雙曲線的漸近線方程為取右焦點(diǎn),一條漸近線則點(diǎn)到的距離為,由所以,則又所以所以焦距為:故選:A【點(diǎn)睛】本題考查雙曲線漸近線方程,以及之間的關(guān)系,識(shí)記常用的結(jié)論:焦點(diǎn)到漸近線的距離為,屬基礎(chǔ)題.10、B【解析】

還原幾何體的直觀圖,可將此三棱錐放入長(zhǎng)方體中,利用體積分割求解即可.【詳解】如圖,三棱錐的直觀圖為,體積.故選:B.【點(diǎn)睛】本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計(jì)算能力,屬于中檔題.11、D【解析】

舉例判斷命題p與q的真假,再由復(fù)合命題的真假判斷得答案.【詳解】當(dāng)時(shí),故命題為假命題;記f(x)=ex﹣x的導(dǎo)數(shù)為f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上遞減,在(0,+∞)上遞增,∴f(x)>f(0)=1>0,即,故命題為真命題;∴是假命題故選D【點(diǎn)睛】本題考查復(fù)合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對(duì)函數(shù)的圖象與性質(zhì),是基礎(chǔ)題.12、D【解析】

求函數(shù)的值域得集合,求定義域得集合,根據(jù)交集和補(bǔ)集的定義寫(xiě)出運(yùn)算結(jié)果.【詳解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴?R(A∩B)=(﹣∞,0]∪[,+∞).故選:D.【點(diǎn)睛】該題考查的是有關(guān)集合的問(wèn)題,涉及到的知識(shí)點(diǎn)有函數(shù)的定義域,函數(shù)的值域,集合的運(yùn)算,屬于基礎(chǔ)題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

兩函數(shù)圖象上存在關(guān)于軸對(duì)稱的點(diǎn)的等價(jià)命題是方程在區(qū)間上有解,化簡(jiǎn)方程在區(qū)間上有解,構(gòu)造函數(shù),求導(dǎo),求出單調(diào)區(qū)間,利用函數(shù)性質(zhì)得解.【詳解】解:根據(jù)題意,若函數(shù)與的圖象上存在關(guān)于軸對(duì)稱的點(diǎn),則方程在區(qū)間上有解,即方程在區(qū)間上有解,設(shè)函數(shù),其導(dǎo)數(shù),又由,可得:當(dāng)時(shí),為減函數(shù),當(dāng)時(shí),為增函數(shù),故函數(shù)有最小值,又由;比較可得:,故函數(shù)有最大值,故函數(shù)在區(qū)間上的值域?yàn)椋蝗舴匠淘趨^(qū)間上有解,必有,則有,即的取值范圍是;故答案為:;【點(diǎn)睛】本題利用導(dǎo)數(shù)研究函數(shù)在某區(qū)間上最值求參數(shù)的問(wèn)題,函數(shù)零點(diǎn)問(wèn)題的拓展.由于函數(shù)的零點(diǎn)就是方程的根,在研究方程的有關(guān)問(wèn)題時(shí),可以將方程問(wèn)題轉(zhuǎn)化為函數(shù)問(wèn)題解決.此類問(wèn)題的切入點(diǎn)是借助函數(shù)的零點(diǎn),結(jié)合函數(shù)的圖象,采用數(shù)形結(jié)合思想加以解決.14、2025【解析】

利用賦值法,結(jié)合展開(kāi)式中各項(xiàng)系數(shù)之和列方程,由此求得的值.再利用二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求得展開(kāi)式中的系數(shù).【詳解】依題意,令,解得,所以,則二項(xiàng)式的展開(kāi)式的通項(xiàng)為:令,得,所以的系數(shù)為.故答案為:2025【點(diǎn)睛】本小題主要考查二項(xiàng)式展開(kāi)式各項(xiàng)系數(shù)之和,考查二項(xiàng)式展開(kāi)式指定項(xiàng)系數(shù)的求法,屬于基礎(chǔ)題.15、【解析】

求導(dǎo),研究函數(shù)單調(diào)性,分析,即得解【詳解】由題意得,,令,解得,令,解得.在上遞減,在遞增.,而,故在區(qū)間上的最小值和最大值分別是.故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)最值的求解中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題16、【解析】

三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,所以在平面的投影為的重心,利用解直角三角形,即可求出點(diǎn)到平面的距離;,可得點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過(guò)和的兩個(gè)平行平面間距離加半徑,即可求出結(jié)論.【詳解】邊長(zhǎng)為,則中線長(zhǎng)為,點(diǎn)到平面的距離為,點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過(guò)和的兩個(gè)平行平面間距離加半徑.又三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,以下求過(guò)和的兩個(gè)平行平面間距離,分別取中點(diǎn),連,則,同理,分別過(guò)做,直線確定平面,直線確定平面,則,同理,為所求,,,所以到直線最大距離為.故答案為:;.【點(diǎn)睛】本題考查空間中的距離、正四面體的結(jié)構(gòu)特征,考查空間想象能力,屬于較難題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1):;:.(2)【解析】

(1)由可得,由,消去參數(shù),可得直線的普通方程為.由可得,將,代入上式,可得,所以曲線的直角坐標(biāo)方程為.(2)由(1)得,的普通方程為,將其化為極坐標(biāo)方程可得,當(dāng)時(shí),,,所以.18、(1)(2)【解析】

本題主要考查了等比數(shù)列的通項(xiàng)公式的求解,數(shù)列求和的錯(cuò)位相減求和是數(shù)列求和中的重點(diǎn)與難點(diǎn),要注意掌握.(1)設(shè)等比數(shù)列{an}的公比為q,則q+q2=6,解方程可求q(2)由(1)可求an=a1?qn-1=2n-1,結(jié)合數(shù)列的特點(diǎn),考慮利用錯(cuò)位相減可求數(shù)列的和解:(1)(2),兩式相減:19、【解析】

由不存在逆矩陣,可得,再利用特征多項(xiàng)式求出特征值3,0,,利用矩陣乘法運(yùn)算即可.【詳解】因?yàn)椴淮嬖谀婢仃?,,所?矩陣的特征多項(xiàng)式為,令,則或,所以,即,所以,所以【點(diǎn)睛】本題考查矩陣的乘法及特征值、特征向量有關(guān)的問(wèn)題,考查學(xué)生的運(yùn)算能力,是一道容易題.20、(1)(2)證明見(jiàn)解析【解析】

(1)求導(dǎo),代入,求出在處的導(dǎo)數(shù)值及函數(shù)值,由此即可求得切線方程;(2)分類討論得出極大值即可判斷.【詳解】(1),當(dāng)時(shí),,,則在的切線方程為;(2)證明:令,解得或,①當(dāng)時(shí),恒成立,此時(shí)函數(shù)在上單調(diào)遞減,∴函數(shù)無(wú)極值;②當(dāng)時(shí),令,解得,令,解得或,∴函數(shù)在上單調(diào)遞增,在,上單調(diào)遞減,∴;③當(dāng)時(shí),令,解得,令,解得或,∴函數(shù)在上單調(diào)遞增,在,上單調(diào)遞減,∴,綜上,函數(shù)的極大值恒大于0.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求切線方程,考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.21、(1);(2).【解析】

(1)依據(jù)能成立問(wèn)題知,,然后利用絕對(duì)值三角不等式求出的最小值,即求得的取值范圍;(2)按照零點(diǎn)分段法解含有兩個(gè)絕對(duì)值的不等式即可。【詳解】因?yàn)椴坏仁接袑?shí)數(shù)解,所以因?yàn)椋怨?。①?dāng)時(shí),,所以,故②當(dāng)時(shí),,所以,故③當(dāng)時(shí),,所以,故綜上,原不等式的解集為?!军c(diǎn)睛】本題主要考查不等式有解問(wèn)題的解法以及含有兩個(gè)絕對(duì)值的不等式問(wèn)題的解法,意在考查零點(diǎn)分段法、絕對(duì)值三角不等式和轉(zhuǎn)化思想、分類討論思想的應(yīng)用。22

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論