版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江西省新余第四中學2025屆高三第二次模擬考試數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.復數(shù),是虛數(shù)單位,則下列結論正確的是A. B.的共軛復數(shù)為C.的實部與虛部之和為1 D.在復平面內(nèi)的對應點位于第一象限2.秦九韶是我國南寧時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例.若輸入、的值分別為、,則輸出的值為()A. B. C. D.3.下列四個圖象可能是函數(shù)圖象的是()A. B. C. D.4.已知函數(shù),則()A. B.1 C.-1 D.05.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.6.設是虛數(shù)單位,則“復數(shù)為純虛數(shù)”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件7.若與互為共軛復數(shù),則()A.0 B.3 C.-1 D.48.若的展開式中二項式系數(shù)和為256,則二項式展開式中有理項系數(shù)之和為()A.85 B.84 C.57 D.569.已知數(shù)列an滿足:an=2,n≤5a1A.16 B.17 C.18 D.1910.設為坐標原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A.1 B. C. D.11.已知集合,,則中元素的個數(shù)為()A.3 B.2 C.1 D.012.已知雙曲線的離心率為,拋物線的焦點坐標為,若,則雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知f(x)為偶函數(shù),當x≤0時,f(x)=e-x-1-x,則曲線y=f(x)14.已知向量,,若,則________.15.工人在安裝一個正六邊形零件時,需要固定如圖所示的六個位置的螺栓.若按一定順序?qū)⒚總€螺栓固定緊,但不能連續(xù)固定相鄰的2個螺栓.則不同的固定螺栓方式的種數(shù)是________.16.直線與拋物線交于兩點,若,則弦的中點到直線的距離等于________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)等比數(shù)列中,.(Ⅰ)求的通項公式;(Ⅱ)記為的前項和.若,求.18.(12分)已知點到拋物線C:y1=1px準線的距離為1.(Ⅰ)求C的方程及焦點F的坐標;(Ⅱ)設點P關于原點O的對稱點為點Q,過點Q作不經(jīng)過點O的直線與C交于兩點A,B,直線PA,PB,分別交x軸于M,N兩點,求的值.19.(12分)已知矩陣,求矩陣的特征值及其相應的特征向量.20.(12分)在平面直角坐標系中,直線與拋物線:交于,兩點,且當時,.(1)求的值;(2)設線段的中點為,拋物線在點處的切線與的準線交于點,證明:軸.21.(12分)如圖在直角中,為直角,,,分別為,的中點,將沿折起,使點到達點的位置,連接,,為的中點.(Ⅰ)證明:面;(Ⅱ)若,求二面角的余弦值.22.(10分)在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的參數(shù)方程為(為參數(shù)),直線經(jīng)過點且傾斜角為.(1)求曲線的極坐標方程和直線的參數(shù)方程;(2)已知直線與曲線交于,滿足為的中點,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用復數(shù)的四則運算,求得,在根據(jù)復數(shù)的模,復數(shù)與共軛復數(shù)的概念等即可得到結論.【詳解】由題意,則,的共軛復數(shù)為,復數(shù)的實部與虛部之和為,在復平面內(nèi)對應點位于第一象限,故選D.【點睛】復數(shù)代數(shù)形式的加減乘除運算的法則是進行復數(shù)運算的理論依據(jù),加減運算類似于多項式的合并同類項,乘法法則類似于多項式乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數(shù)化,其次要熟悉復數(shù)相關基本概念,如復數(shù)的實部為、虛部為、模為、對應點為、共軛為.2、B【解析】
列出循環(huán)的每一步,由此可得出輸出的值.【詳解】由題意可得:輸入,,,;第一次循環(huán),,,,繼續(xù)循環(huán);第二次循環(huán),,,,繼續(xù)循環(huán);第三次循環(huán),,,,跳出循環(huán);輸出.故選:B.【點睛】本題考查根據(jù)算法框圖計算輸出值,一般要列舉出算法的每一步,考查計算能力,屬于基礎題.3、C【解析】
首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個單位而得到,因為為奇函數(shù),即可得到函數(shù)圖象關于對稱,即可排除A、D,再根據(jù)時函數(shù)值,排除B,即可得解.【詳解】∵的定義域為,其圖象可由的圖象沿軸向左平移1個單位而得到,∵為奇函數(shù),圖象關于原點對稱,∴的圖象關于點成中心對稱.可排除A、D項.當時,,∴B項不正確.故選:C【點睛】本題考查函數(shù)的性質(zhì)與識圖能力,一般根據(jù)四個選擇項來判斷對應的函數(shù)性質(zhì),即可排除三個不符的選項,屬于中檔題.4、A【解析】
由函數(shù),求得,進而求得的值,得到答案.【詳解】由題意函數(shù),則,所以,故選A.【點睛】本題主要考查了分段函數(shù)的求值問題,其中解答中根據(jù)分段函數(shù)的解析式,代入求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.5、B【解析】
由題中垂直關系,可得漸近線的方程,結合,構造齊次關系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B【點睛】本題考查了雙曲線的漸近線和離心率,考查了學生綜合分析,概念理解,數(shù)學運算的能力,屬于中檔題.6、D【解析】
結合純虛數(shù)的概念,可得,再結合充分條件和必要條件的定義即可判定選項.【詳解】若復數(shù)為純虛數(shù),則,所以,若,不妨設,此時復數(shù),不是純虛數(shù),所以“復數(shù)為純虛數(shù)”是“”的充分不必要條件.故選:D【點睛】本題考查充分條件和必要條件,考查了純虛數(shù)的概念,理解充分必要條件的邏輯關系是解題的關鍵,屬于基礎題.7、C【解析】
計算,由共軛復數(shù)的概念解得即可.【詳解】,又由共軛復數(shù)概念得:,.故選:C【點睛】本題主要考查了復數(shù)的運算,共軛復數(shù)的概念.8、A【解析】
先求,再確定展開式中的有理項,最后求系數(shù)之和.【詳解】解:的展開式中二項式系數(shù)和為256故,要求展開式中的有理項,則則二項式展開式中有理項系數(shù)之和為:故選:A【點睛】考查二項式的二項式系數(shù)及展開式中有理項系數(shù)的確定,基礎題.9、B【解析】
由題意可得a1=a2=a3=a4=a5=2,累加法求得a62+【詳解】解:an即a1=an?6時,a1a1兩式相除可得1+a則an2=由a6a7…,ak2=可得aa1且a1正整數(shù)k(k?5)時,要使得a1則ak+1則k=17,故選:B.【點睛】本題考查與遞推數(shù)列相關的方程的整數(shù)解的求法,注意將題設中的遞推關系變形得到新的遞推關系,從而可簡化與數(shù)列相關的方程,本題屬于難題.10、A【解析】
設,因為,得到,利用直線的斜率公式,得到,結合基本不等式,即可求解.【詳解】由題意,拋物線的焦點坐標為,設,因為,即線段的中點,所以,所以直線的斜率,當且僅當,即時等號成立,所以直線的斜率的最大值為1.故選:A.【點睛】本題主要考查了拋物線的方程及其應用,直線的斜率公式,以及利用基本不等式求最值的應用,著重考查了推理與運算能力,屬于中檔試題.11、C【解析】
集合表示半圓上的點,集合表示直線上的點,聯(lián)立方程組求得方程組解的個數(shù),即為交集中元素的個數(shù).【詳解】由題可知:集合表示半圓上的點,集合表示直線上的點,聯(lián)立與,可得,整理得,即,當時,,不滿足題意;故方程組有唯一的解.故.故選:C.【點睛】本題考查集合交集的求解,涉及圓和直線的位置關系的判斷,屬基礎題.12、A【解析】
求出拋物線的焦點坐標,得到雙曲線的離心率,然后求解a,b關系,即可得到雙曲線的漸近線方程.【詳解】拋物線y2=2px(p>0)的焦點坐標為(1,0),則p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以雙曲線的漸近線方程為:y=±.故選:A.【點睛】本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡單性質(zhì)的應用.二、填空題:本題共4小題,每小題5分,共20分。13、y=2x【解析】試題分析:當x>0時,-x<0,則f(-x)=ex-1+x.又因為f(x)為偶函數(shù),所以f(x)=f(-x)=ex-1+x,所以f'【考點】函數(shù)的奇偶性、解析式及導數(shù)的幾何意義【知識拓展】本題題型可歸納為“已知當x>0時,函數(shù)y=f(x),則當x<0時,求函數(shù)的解析式”.有如下結論:若函數(shù)f(x)為偶函數(shù),則當x<0時,函數(shù)的解析式為y=-f(x);若f(x)為奇函數(shù),則函數(shù)的解析式為y=-f(-x).14、10【解析】
根據(jù)垂直得到,代入計算得到答案.【詳解】,則,解得,故,故.故答案為:.【點睛】本題考查了根據(jù)向量垂直求參數(shù),向量模,意在考查學生的計算能力.15、60【解析】分析:首先將選定第一個釘,總共有6種方法,假設選定1號,之后分析第二步,第三步等,按照分類加法計數(shù)原理,可以求得共有10種方法,利用分步乘法計數(shù)原理,求得總共有種方法.詳解:根據(jù)題意,第一個可以從6個釘里任意選一個,共有6種選擇方法,并且是機會相等的,若第一個選1號釘?shù)臅r候,第二個可以選3,4,5號釘,依次選下去,可以得到共有10種方法,所以總共有種方法,故答案是60.點睛:該題考查的是有關分類加法計數(shù)原理和分步乘法計數(shù)原理,在解題的過程中,需要逐個的將對應的過程寫出來,所以利用列舉法將對應的結果列出,而對于第一個選哪個是機會均等的,從而用乘法運算得到結果.16、【解析】
由已知可知直線過拋物線的焦點,求出弦的中點到拋物線準線的距離,進一步得到弦的中點到直線的距離.【詳解】解:如圖,直線過定點,,而拋物線的焦點為,,弦的中點到準線的距離為,則弦的中點到直線的距離等于.故答案為:.【點睛】本題考查拋物線的簡單性質(zhì),考查直線與拋物線位置關系的應用,體現(xiàn)了數(shù)學轉(zhuǎn)化思想方法,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)或(Ⅱ)12【解析】
(1)先設數(shù)列的公比為,根據(jù)題中條件求出公比,即可得出通項公式;(2)根據(jù)(1)的結果,由等比數(shù)列的求和公式,即可求出結果.【詳解】(1)設數(shù)列的公比為,,,或.(2)時,,解得;時,,無正整數(shù)解;綜上所述.【點睛】本題主要考查等比數(shù)列,熟記等比數(shù)列的通項公式與求和公式即可,屬于基礎題型.18、(Ⅰ)C的方程為,焦點F的坐標為(1,0);(Ⅱ)1【解析】
(Ⅰ)根據(jù)拋物線定義求出p,即可求C的方程及焦點F的坐標;
(Ⅱ)設點A(x1,y1),B(x1,y1),由已知得Q(?1,?1),由題意直線AB斜率存在且不為0,設直線AB的方程為y=k(x+1)?1(k≠0),與拋物線聯(lián)立可得ky1-4y+4k-8=0,利用韋達定理以及弦長公式,轉(zhuǎn)化求解|MF|?|NF|的值.【詳解】(Ⅰ)由已知得,所以p=1.所以拋物線C的方程為,焦點F的坐標為(1,0);(II)設點A(x1,y1),B(x1,y1),由已知得Q(?1,?1),由題意直線AB斜率存在且不為0.設直線AB的方程為y=k(x+1)?1(k≠0).由得,則,.因為點A,B在拋物線C上,所以,.因為PF⊥x軸,所以,所以|MF|?|NF|的值為1.【點睛】本題考查拋物線的定義、標準方程及直線與拋物線中的定值問題,常用韋達定理設而不求來求解,本題解題關鍵是找出弦長與斜率之間的關系進行求解,屬于中等題.19、矩陣屬于特征值的一個特征向量為,矩陣屬于特征值的一個特征向量為【解析】
先由矩陣特征值的定義列出特征多項式,令解方程可得特征值,再由特征值列出方程組,即可求得相應的特征向量.【詳解】由題意,矩陣的特征多項式為,令,解得,,將代入二元一次方程組,解得,所以矩陣屬于特征值的一個特征向量為;同理,矩陣屬于特征值的一個特征向量為v【點睛】本題主要考查了矩陣的特征值與特征向量的計算,其中解答中熟記矩陣的特征值和特征向量的計算方法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.20、(1)1;(2)見解析【解析】
(1)設,,聯(lián)立直線和拋物線方程,得,寫出韋達定理,根據(jù)弦長公式,即可求出;(2)由,得,根據(jù)導數(shù)的幾何意義,求出拋物線在點點處切線方程,進而求出,即可證出軸.【詳解】解:(1)設,,將直線代入中整理得:,∴,,∴,解得:.(2)同(1)假設,,由,得,從而拋物線在點點處的切線方程為,即,令,得,由(1)知,從而,這表明軸.【點睛】本題考查直線與拋物線的位置關系,涉及聯(lián)立方程組、韋達定理、弦長公式以及利用導數(shù)求切線方程,考查轉(zhuǎn)化思想和計算能力.21、(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)取中點,連結、,四邊形是平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年預拌砂漿產(chǎn)業(yè)鏈上下游產(chǎn)業(yè)轉(zhuǎn)型升級合作合同3篇
- 三方車輛租賃協(xié)議2024版專業(yè)模板版
- 廣東省揭陽市2025年中考語文模擬試卷五套【附參考答案】
- 2024年餐具回收利用協(xié)議3篇
- 12 慧眼看交通 第1課時 說課稿-2023-2024學年道德與法治三年級下冊統(tǒng)編版
- 2024年版國際制藥行業(yè)技術轉(zhuǎn)移合同
- 2024樣板間房地產(chǎn)買賣合同模板3篇
- 專業(yè)辣椒經(jīng)銷商2024年度購貨協(xié)議版B版
- 2024水利工程環(huán)境監(jiān)理規(guī)范執(zhí)行操作指導合同范本3篇
- 福建省南平市塔前中學高二地理聯(lián)考試卷含解析
- 校區(qū)熱水供水系統(tǒng)維護服務第冊維保服務方案
- 《社會研究方法》全套課件(完整版)
- 3D打印行業(yè)研究報告
- 魯教版(五四制)七年級數(shù)學下冊電子課本教材
- 人教版八年級物理上冊 1.5運動圖像(專題練習)原卷版+解析
- (2024年)Maya三維建模教案
- 國開電大本科《理工英語4》機考真題(第六套)
- 公共資源交易培訓課件
- 護理實習針灸科出科小結
- 信息系統(tǒng)集成方案
- 2024年二級造價師題庫(鞏固)
評論
0/150
提交評論