




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖北省華師一附中2025屆高考沖刺模擬數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則2.已知復(fù)數(shù)滿足(其中為的共軛復(fù)數(shù)),則的值為()A.1 B.2 C. D.3.已知函數(shù),當(dāng)時,的取值范圍為,則實數(shù)m的取值范圍是()A. B. C. D.4.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.5.函數(shù)的最小正周期是,則其圖象向左平移個單位長度后得到的函數(shù)的一條對稱軸是()A. B. C. D.6.設(shè),分別為雙曲線(a>0,b>0)的左、右焦點,過點作圓的切線與雙曲線的左支交于點P,若,則雙曲線的離心率為()A. B. C. D.7.在“一帶一路”知識測驗后,甲、乙、丙三人對成績進(jìn)行預(yù)測.甲:我的成績比乙高.乙:丙的成績比我和甲的都高.丙:我的成績比乙高.成績公布后,三人成績互不相同且只有一個人預(yù)測正確,那么三人按成績由高到低的次序為A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙8.已知為等腰直角三角形,,,為所在平面內(nèi)一點,且,則()A. B. C. D.9.若,滿足約束條件,則的最大值是()A. B. C.13 D.10.已知直線與圓有公共點,則的最大值為()A.4 B. C. D.11.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位12.在中,,,分別為角,,的對邊,若的面為,且,則()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,圓,直線PM,PN分別與圓O相切,切點為M,N,若,則的最小值為________.14.已知函數(shù).若在區(qū)間上恒成立.則實數(shù)的取值范圍是__________.15.已知雙曲線的左右焦點為,過作軸的垂線與相交于兩點,與軸相交于.若,則雙曲線的離心率為_________.16.現(xiàn)有一塊邊長為a的正方形鐵片,鐵片的四角截去四個邊長均為x的小正方形,然后做成一個無蓋方盒,該方盒容積的最大值是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論函數(shù)的極值;(2)記關(guān)于的方程的兩根分別為,求證:.18.(12分)設(shè),,,.(1)若的最小值為4,求的值;(2)若,證明:或.19.(12分)在中,角、、所對的邊分別為、、,且.(1)求角的大小;(2)若,的面積為,求及的值.20.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點.(1)證明:;(2)求直線與平面所成角的正弦值.21.(12分)某地為改善旅游環(huán)境進(jìn)行景點改造.如圖,將兩條平行觀光道l1和l2通過一段拋物線形狀的棧道AB連通(道路不計寬度),l1和l2所在直線的距離為0.5(百米),對岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點,拋物線的對稱軸垂直于l3,且交l3于M
),在堤岸線l3上的E,F(xiàn)兩處建造建筑物,其中E,F(xiàn)到M的距離為1
(百米),且F恰在B的正對岸(即BF⊥l3).(1)在圖②中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并求棧道AB的方程;(2)游客(視為點P)在棧道AB的何處時,觀測EF的視角(∠EPF)最大?請在(1)的坐標(biāo)系中,寫出觀測點P的坐標(biāo).22.(10分)在中,為邊上一點,,.(1)求;(2)若,,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)空間中平行關(guān)系、垂直關(guān)系的相關(guān)判定和性質(zhì)可依次判斷各個選項得到結(jié)果.【詳解】對于,若,則可能為平行或異面直線,錯誤;對于,若,則可能為平行、相交或異面直線,錯誤;對于,若,且,由面面垂直的判定定理可知,正確;對于,若,只有當(dāng)垂直于的交線時才有,錯誤.故選:.【點睛】本題考查空間中線面關(guān)系、面面關(guān)系相關(guān)命題的辨析,關(guān)鍵是熟練掌握空間中的平行關(guān)系與垂直關(guān)系的相關(guān)命題.2、D【解析】
按照復(fù)數(shù)的運算法則先求出,再寫出,進(jìn)而求出.【詳解】,,.故選:D【點睛】本題考查復(fù)數(shù)的四則運算、共軛復(fù)數(shù)及復(fù)數(shù)的模,考查基本運算能力,屬于基礎(chǔ)題.3、C【解析】
求導(dǎo)分析函數(shù)在時的單調(diào)性、極值,可得時,滿足題意,再在時,求解的x的范圍,綜合可得結(jié)果.【詳解】當(dāng)時,,令,則;,則,∴函數(shù)在單調(diào)遞增,在單調(diào)遞減.∴函數(shù)在處取得極大值為,∴時,的取值范圍為,∴又當(dāng)時,令,則,即,∴綜上所述,的取值范圍為.故選C.【點睛】本題考查了利用導(dǎo)數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質(zhì),屬于難題.4、D【解析】
直接利用復(fù)數(shù)的模的求法的運算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項:【點睛】本題考查復(fù)數(shù)的模的運算法則的應(yīng)用,復(fù)數(shù)的模的求法,考查計算能力.5、D【解析】
由三角函數(shù)的周期可得,由函數(shù)圖像的變換可得,平移后得到函數(shù)解析式為,再求其對稱軸方程即可.【詳解】解:函數(shù)的最小正周期是,則函數(shù),經(jīng)過平移后得到函數(shù)解析式為,由,得,當(dāng)時,.故選D.【點睛】本題考查了正弦函數(shù)圖像的性質(zhì)及函數(shù)圖像的平移變換,屬基礎(chǔ)題.6、C【解析】
設(shè)過點作圓的切線的切點為,根據(jù)切線的性質(zhì)可得,且,再由和雙曲線的定義可得,得出為中點,則有,得到,即可求解.【詳解】設(shè)過點作圓的切線的切點為,,所以是中點,,,.故選:C.【點睛】本題考查雙曲線的性質(zhì)、雙曲線定義、圓的切線性質(zhì),意在考查直觀想象、邏輯推理和數(shù)學(xué)計算能力,屬于中檔題.7、A【解析】
利用逐一驗證的方法進(jìn)行求解.【詳解】若甲預(yù)測正確,則乙、丙預(yù)測錯誤,則甲比乙成績高,丙比乙成績低,故3人成績由高到低依次為甲,乙,丙;若乙預(yù)測正確,則丙預(yù)測也正確,不符合題意;若丙預(yù)測正確,則甲必預(yù)測錯誤,丙比乙的成績高,乙比甲成績高,即丙比甲,乙成績都高,即乙預(yù)測正確,不符合題意,故選A.【點睛】本題將數(shù)學(xué)知識與時政結(jié)合,主要考查推理判斷能力.題目有一定難度,注重了基礎(chǔ)知識、邏輯推理能力的考查.8、D【解析】
以AB,AC分別為x軸和y軸建立坐標(biāo)系,結(jié)合向量的坐標(biāo)運算,可求得點的坐標(biāo),進(jìn)而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數(shù)量積的運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.9、C【解析】
由已知畫出可行域,利用目標(biāo)函數(shù)的幾何意義求最大值.【詳解】解:表示可行域內(nèi)的點到坐標(biāo)原點的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點到坐標(biāo)原點的距離最大,即.故選:.【點睛】本題考查線性規(guī)劃問題,考查數(shù)形結(jié)合的數(shù)學(xué)思想以及運算求解能力,屬于基礎(chǔ)題.10、C【解析】
根據(jù)表示圓和直線與圓有公共點,得到,再利用二次函數(shù)的性質(zhì)求解.【詳解】因為表示圓,所以,解得,因為直線與圓有公共點,所以圓心到直線的距離,即,解得,此時,因為,在遞增,所以的最大值.故選:C【點睛】本題主要考查圓的方程,直線與圓的位置關(guān)系以及二次函數(shù)的性質(zhì),還考查了運算求解的能力,屬于中檔題.11、D【解析】
直接根據(jù)三角函數(shù)的圖象平移規(guī)則得出正確的結(jié)論即可;【詳解】解:函數(shù),要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個單位.故選:D.【點睛】本題考查三角函數(shù)圖象平移的應(yīng)用問題,屬于基礎(chǔ)題.12、D【解析】
根據(jù)三角形的面積公式以及余弦定理進(jìn)行化簡求出的值,然后利用兩角和差的正弦公式進(jìn)行求解即可.【詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【點睛】本題主要考查解三角形的應(yīng)用,結(jié)合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進(jìn)行計算是解決本題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由可知R為中點,設(shè),由過切點的切線方程即可求得,,代入,,則在直線上,即可得方程為,將,代入化簡可得,則直線過定點,由則點在以為直徑的圓上,則.即可求得.【詳解】如圖,由可知R為MN的中點,所以,,設(shè),則切線PM的方程為,即,同理可得,因為PM,PN都過,所以,,所以在直線上,從而直線MN方程為,因為,所以,即直線MN方程為,所以直線MN過定點,所以R在以O(shè)Q為直徑的圓上,所以.故答案為:.【點睛】本題考查直線和圓的位置關(guān)系,考查圓的切線方程,定點和圓上動點距離的最值問題,考查學(xué)生的數(shù)形結(jié)合能力和計算能力,難度較難.14、【解析】
首先解不等式,再由在區(qū)間上恒成立,即得到不等組,解得即可.【詳解】解:且,即解得,即因為在區(qū)間上恒成立,解得即故答案為:【點睛】本題考查一元二次不等式及函數(shù)的綜合問題,屬于基礎(chǔ)題.15、【解析】
由已知可得,結(jié)合雙曲線的定義可知,結(jié)合,從而可求出離心率.【詳解】解:,,又,則.,,,即解得,即.故答案為:.【點睛】本題考查了雙曲線的定義,考查了雙曲線的性質(zhì).本題的關(guān)鍵是根據(jù)幾何關(guān)系,分析出.關(guān)于圓錐曲線的問題,一般如果能結(jié)合幾何性質(zhì),可大大減少計算量.16、【解析】
由題意容積,求導(dǎo)研究單調(diào)性,分析即得解.【詳解】由題意:容積,,則,由得或(舍去),令則為V在定義域內(nèi)唯一的極大值點也是最大值點,此時.故答案為:【點睛】本題考查了導(dǎo)數(shù)在實際問題中的應(yīng)用,考查了學(xué)生數(shù)學(xué)建模,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】
(1)對函數(shù)求導(dǎo),對參數(shù)討論,得函數(shù)單調(diào)區(qū)間,進(jìn)而求出極值;(2)是方程的兩根,代入方程,化簡換元,構(gòu)造新函數(shù)利用函數(shù)單調(diào)性求最值可解.【詳解】(1)依題意,;若,則,則函數(shù)在上單調(diào)遞增,此時函數(shù)既無極大值,也無極小值;若,則,令,解得,故當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減,此時函數(shù)有極大值,無極小值;若,則,令,解得,故當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減,此時函數(shù)有極大值,無極小值;(2)依題意,,則,,故,;要證:,即證,即證:,即證,設(shè),只需證:,設(shè),則,故在上單調(diào)遞增,故,即,故.【點睛】本題考查函數(shù)極值及利用導(dǎo)數(shù)證明二元不等式.證明二元不等式常用方法是轉(zhuǎn)化為證明一元不等式,再轉(zhuǎn)化為函數(shù)最值問題.利用導(dǎo)數(shù)證明不等式的基本方法:(1)若與的最值易求出,可直接轉(zhuǎn)化為證明;(2)若與的最值不易求出,可構(gòu)造函數(shù),然后根據(jù)函數(shù)的單調(diào)性或最值,證明.18、(1)2;(2)見解析【解析】
(1)將化簡為,再利用基本不等式即可求出最小值為4,便可得出的值;(2)根據(jù),即,得出,利用基本不等式求出最值,便可得出的取值范圍.【詳解】解:(1)由題可知,,,,,∴.(2)∵,∴,∴,∴,即:或.【點睛】本題考查基本不等式的應(yīng)用,利用基本不等式和放縮法求最值,考查化簡計算能力.19、(1)(2);【解析】
(1)由代入中計算即可;(2)由余弦定理可得,所以,由,變形即可得到答案.【詳解】(1)因為,可得:,∴,或(舍),∵,∴.(2)由余弦定理,得所以,故,又,所以,所以.【點睛】本題考查二倍角公式以及正余弦定理解三角形,考查學(xué)生的運算求解能力,是一道容易題.20、(1)見證明;(2)【解析】
(1)設(shè)是的中點,連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標(biāo)原點,的方向為軸的正方向,建空間直角坐標(biāo)系,分別計算各個點坐標(biāo),計算平面法向量,利用向量的夾角公式得到直線與平面所成角的正弦值.【詳解】(1)證明:設(shè)是的中點,連接、,是的中點,,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過點作,垂足為,平面,以為坐標(biāo)原點,的方向為軸的正方向,建立如圖的空間直角坐標(biāo)系,則,,,,設(shè)是平面的一個法向量,則,,令,則,,,直線與平面所成角的正弦值為.【點睛】本題考查了線面垂直,線線垂直,利用空間直角坐標(biāo)系解決線面夾角問題,意在考查學(xué)生的空間想象能力和計算能力.21、(1)見解析,,x[0,1];(2)P(,)時,視角∠EPF最大.【解析】
(1)以A為原點,l1為x軸,拋物線的對稱軸為y軸建系,設(shè)出方程,通過點的坐標(biāo)可求方程;(2)設(shè)出的坐標(biāo),表示出,利用基本不等式求解的最大值,從而可得觀測點P的坐標(biāo).【詳解】(1)以A為原點,l1為x軸,拋物線的對稱軸為y軸建系由題意知:B(1,0.5),設(shè)拋物線方程為代入點B得:p=1,故方程為,x[0,1];(2)設(shè)P(,),t[0,],作PQ⊥l3于Q,記∠EPQ=,∠FPQ=,,令,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 13《橋》教學(xué)設(shè)計-2024-2025學(xué)年六年級語文上冊統(tǒng)編版
- 老年疾病與照護(hù)模擬考試題與參考答案
- 建筑工程安全生產(chǎn)技術(shù)模擬考試題含參考答案
- 《求一個數(shù)是另一個數(shù)的幾倍》(教學(xué)設(shè)計 )-2024-2025學(xué)年三年級上冊數(shù)學(xué)人教版
- 第1單元第2課《輕松上路-規(guī)劃網(wǎng)站及創(chuàng)建站點》-教學(xué)設(shè)計2023-2024學(xué)年清華大學(xué)版(2012)初中信息技術(shù)八年級下冊
- 七年級下冊語文第十八課測試卷部編版及答案
- 實 踐 調(diào)研我國造船與航海方面的成就(教學(xué)設(shè)計)-2024-2025學(xué)年滬科版物理八年級下冊
- 人教版七年級歷史與社會上冊 3.3.3水上都市教學(xué)設(shè)計
- 第二單元課題3制取氧氣第二課時教學(xué)設(shè)計-2024-2025學(xué)年九年級化學(xué)人教版(2024)上冊
- 2025至2030年中國油壓裝置數(shù)據(jù)監(jiān)測研究報告
- 孤殘兒童試題庫(含答案)
- 新人美版高中美術(shù)選擇性必修“繪畫”《認(rèn)識多面繪畫-繪畫的工具與材料》教學(xué)設(shè)計
- premiere設(shè)計畢業(yè)論文
- 三年級體育教學(xué)進(jìn)度表
- 醫(yī)務(wù)人員法律法規(guī)專題培訓(xùn)
- 《紅樓夢第四回》課件
- 科技成果查新檢索基本情況表
- 家長會課件:七年級家長會優(yōu)質(zhì)課件
- 《AutoCAD 中文版實例教程(AutoCAD 2020) (微課版)(第 2 版)》課件 馬連志 第1、2章 AutoCAD 2020 中文版入門、繪圖設(shè)置
- 出貨單表格模板下載
- PEP六年級上冊英語unit1
評論
0/150
提交評論