黑龍江省鶴崗一中2025屆高考數學考前最后一卷預測卷含解析_第1頁
黑龍江省鶴崗一中2025屆高考數學考前最后一卷預測卷含解析_第2頁
黑龍江省鶴崗一中2025屆高考數學考前最后一卷預測卷含解析_第3頁
黑龍江省鶴崗一中2025屆高考數學考前最后一卷預測卷含解析_第4頁
黑龍江省鶴崗一中2025屆高考數學考前最后一卷預測卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省鶴崗一中2025屆高考數學考前最后一卷預測卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的圖象大致為A. B. C. D.2.已知為等差數列,若,,則()A.1 B.2 C.3 D.63.過雙曲線的右焦點F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經過雙曲線C的左頂點,則雙曲線C的離心率為()A. B. C.2 D.4.若函數在時取得極值,則()A. B. C. D.5.函數在上為增函數,則的值可以是()A.0 B. C. D.6.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm37.要得到函數的圖象,只需將函數的圖象上所有點的()A.橫坐標縮短到原來的(縱坐標不變),再向左平移個單位長度B.橫坐標縮短到原來的(縱坐標不變),再向右平移個單位長度C.橫坐標伸長到原來的2倍(縱坐標不變),再向左平移個單位長度D.橫坐標伸長到原來的2倍(縱坐標不變),再向右平移個單位長度8.已知為虛數單位,若復數,,則A. B.C. D.9.過雙曲線的左焦點作直線交雙曲線的兩天漸近線于,兩點,若為線段的中點,且(為坐標原點),則雙曲線的離心率為()A. B. C. D.10.某中學2019年的高考考生人數是2016年高考考生人數的1.2倍,為了更好地對比該??忌纳龑W情況,統(tǒng)計了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結論正確的是().A.與2016年相比,2019年不上線的人數有所增加B.與2016年相比,2019年一本達線人數減少C.與2016年相比,2019年二本達線人數增加了0.3倍D.2016年與2019年藝體達線人數相同11.已知(i為虛數單位,),則ab等于()A.2 B.-2 C. D.12.已知雙曲線,點是直線上任意一點,若圓與雙曲線的右支沒有公共點,則雙曲線的離心率取值范圍是().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖在三棱柱中,,,,點為線段上一動點,則的最小值為________.14.的展開式中二項式系數最大的項的系數為_________(用數字作答).15.已知橢圓與雙曲線有相同的焦點、,其中為左焦點.點為兩曲線在第一象限的交點,、分別為曲線、的離心率,若是以為底邊的等腰三角形,則的取值范圍為________.16.設滿足約束條件,則的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓經過點,離心率為.(1)求橢圓的方程;(2)經過點且斜率存在的直線交橢圓于兩點,點與點關于坐標原點對稱.連接.求證:存在實數,使得成立.18.(12分)如圖,三棱柱的所有棱長均相等,在底面上的投影在棱上,且∥平面(Ⅰ)證明:平面平面;(Ⅱ)求直線與平面所成角的余弦值.19.(12分)已知函數,其中e為自然對數的底數.(1)討論函數的單調性;(2)用表示中較大者,記函數.若函數在上恰有2個零點,求實數a的取值范圍.20.(12分)已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.(1)求橢圓的方程;(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.21.(12分)已知橢圓的離心率為,且過點.(Ⅰ)求橢圓的方程;(Ⅱ)設是橢圓上且不在軸上的一個動點,為坐標原點,過右焦點作的平行線交橢圓于、兩個不同的點,求的值.22.(10分)已知數列為公差為d的等差數列,,,且,,依次成等比數列,.(1)求數列的前n項和;(2)若,求數列的前n項和為.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由題可得函數的定義域為,因為,所以函數為奇函數,排除選項B;又,,所以排除選項A、C,故選D.2、B【解析】

利用等差數列的通項公式列出方程組,求出首項和公差,由此能求出.【詳解】∵{an}為等差數列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點睛】本題考查等差數列通項公式求法,考查等差數列的性質等基礎知識,考查運算求解能力,是基礎題.3、C【解析】

由得F是弦AB的中點.進而得AB垂直于x軸,得,再結合關系求解即可【詳解】因為,所以F是弦AB的中點.且AB垂直于x軸.因為以AB為直徑的圓經過雙曲線C的左頂點,所以,即,則,故.故選:C【點睛】本題是對雙曲線的漸近線以及離心率的綜合考查,是考查基本知識,屬于基礎題.4、D【解析】

對函數求導,根據函數在時取得極值,得到,即可求出結果.【詳解】因為,所以,又函數在時取得極值,所以,解得.故選D【點睛】本題主要考查導數的應用,根據函數的極值求參數的問題,屬于??碱}型.5、D【解析】

依次將選項中的代入,結合正弦、余弦函數的圖象即可得到答案.【詳解】當時,在上不單調,故A不正確;當時,在上單調遞減,故B不正確;當時,在上不單調,故C不正確;當時,在上單調遞增,故D正確.故選:D【點睛】本題考查正弦、余弦函數的單調性,涉及到誘導公式的應用,是一道容易題.6、B【解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.7、C【解析】

根據三角函數圖像的變換與參數之間的關系,即可容易求得.【詳解】為得到,將橫坐標伸長到原來的2倍(縱坐標不變),故可得;再將向左平移個單位長度,故可得.故選:C.【點睛】本題考查三角函數圖像的平移,涉及誘導公式的使用,屬基礎題.8、B【解析】

由可得,所以,故選B.9、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點,∴,則為等腰三角形.∴由雙曲線的的漸近線的性質可得∴∴,即.∴雙曲線的離心率為故選C.點睛:本題考查了橢圓和雙曲線的定義和性質,考查了離心率的求解,同時涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關系應用,對于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).10、A【解析】

設2016年高考總人數為x,則2019年高考人數為,通過簡單的計算逐一驗證選項A、B、C、D.【詳解】設2016年高考總人數為x,則2019年高考人數為,2016年高考不上線人數為,2019年不上線人數為,故A正確;2016年高考一本人數,2019年高考一本人數,故B錯誤;2019年二本達線人數,2016年二本達線人數,增加了倍,故C錯誤;2016年藝體達線人數,2019年藝體達線人數,故D錯誤.故選:A.【點睛】本題考查柱狀圖的應用,考查學生識圖的能力,是一道較為簡單的統(tǒng)計類的題目.11、A【解析】

利用復數代數形式的乘除運算化簡,再由復數相等的條件列式求解.【詳解】,,得,..故選:.【點睛】本題考查復數代數形式的乘除運算,考查復數相等的條件,意在考查學生對這些知識的理解掌握水平,是基礎題.12、B【解析】

先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據圓與雙曲線的右支沒有公共點,可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點,則直線與直線的距離,∵圓與雙曲線的右支沒有公共點,則,∴,即,又故的取值范圍為,故選:B.【點睛】本題主要考查了直線和雙曲線的位置關系,以及兩平行線間的距離公式,其中解答中根據圓與雙曲線的右支沒有公共點得出是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

把繞著進行旋轉,當四點共面時,運用勾股定理即可求得的最小值.【詳解】將以為軸旋轉至與面在一個平面,展開圖如圖所示,若,,三點共線時最小為,為直角三角形,故答案為:【點睛】本題考查了空間幾何體的翻折,平面內兩點之間線段最短,解直角三角形進行求解,考查了空間想象能力和計算能力,屬于中檔題.14、5670【解析】

根據二項式展開的通項,可得二項式系數的最大項,可求得其系數.【詳解】二項展開式一共有項,所以由二項式系數的性質可知二項式系數最大的項為第5項,系數為.故答案為:5670【點睛】本題考查了二項式定理展開式的應用,由通項公式求二項式系數,屬于中檔題.15、【解析】

設,由橢圓和雙曲線的定義得到,根據是以為底邊的等腰三角形,得到,從而有,根據,得到,再利用導數法求的范圍.【詳解】設,由橢圓的定義得,由雙曲線的定義得,所以,因為是以為底邊的等腰三角形,所以,即,因為,所以,因為,所以,所以,即,而,因為,所以在上遞增,所以.故答案為:【點睛】本題主要考查橢圓,雙曲線的定義和幾何性質,還考查了運算求解的能力,屬于中檔題.16、【解析】

由題意畫出可行域,轉化目標函數為,數形結合即可得到的最值,即可得解.【詳解】由題意畫出可行域,如圖:轉化目標函數為,通過平移直線,數形結合可知:當直線過點A時,直線截距最大,z最?。划斨本€過點C時,直線截距最小,z最大.由可得,由可得,當直線過點時,;當直線過點時,,所以.故答案為:.【點睛】本題考查了簡單的線性規(guī)劃,考查了數形結合思想,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】

(1)由點可得,由,根據即可求解;(2)設直線的方程為,聯立可得,設,由韋達定理可得,再根據直線的斜率公式求得;由點B與點Q關于原點對稱,可設,可求得,則,即可求證.【詳解】解:(1)由題意可知,,又,得,所以橢圓的方程為(2)證明:設直線的方程為,聯立,可得,設,則有,因為,所以,又因為點B與點Q關于原點對稱,所以,即,則有,由點在橢圓上,得,所以,所以,即,所以存在實數,使成立【點睛】本題考查橢圓的標準方程,考查直線的斜率公式的應用,考查運算能力.18、(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)連接交于點,連接,由于平面,得出,根據線線位置關系得出,利用線面垂直的判定和性質得出,結合條件以及面面垂直的判定,即可證出平面平面;(Ⅱ)根據題意,建立空間直角坐標系,利用空間向量法分別求出和平面的法向量,利用空間向量線面角公式,即可求出直線與平面所成角的余弦值.【詳解】解:(Ⅰ)證明:連接交于點,連接,則平面平面,平面,,為的中點,為的中點,平面,,平面,平面,平面平面(Ⅱ)建立如圖所示空間直角坐標系,設則,,,,,設平面的法向量為,則,取得,設直線與平面所成角為,直線與平面所成角的余弦值為.【點睛】本題考查面面垂直的判定以及利用空間向量法求線面角的余弦值,考查空間想象能力和推理能力.19、(1)函數的單調遞增區(qū)間為和,單調遞減區(qū)間為;(2).【解析】

(1)由題可得,結合的范圍判斷的正負,即可求解;(2)結合導數及函數的零點的判定定理,分類討論進行求解【詳解】(1),①當時,,∴函數在內單調遞增;②當時,令,解得或,當或時,,則單調遞增,當時,,則單調遞減,∴函數的單調遞增區(qū)間為和,單調遞減區(qū)間為(2)(Ⅰ)當時,所以在上無零點;(Ⅱ)當時,,①若,即,則是的一個零點;②若,即,則不是的零點(Ⅲ)當時,,所以此時只需考慮函數在上零點的情況,因為,所以①當時,在上單調遞增。又,所以(?。┊敃r,在上無零點;(ⅱ)當時,,又,所以此時在上恰有一個零點;②當時,令,得,由,得;由,得,所以在上單調遞減,在上單調遞增,因為,,所以此時在上恰有一個零點,綜上,【點睛】本題考查利用導數求函數單調區(qū)間,考查利用導數處理零點個數問題,考查運算能力,考查分類討論思想20、(1);(2)存在,且方程為或.【解析】

(1)依題意列出關于a,b,c的方程組,求得a,b,進而可得到橢圓方程;(2)聯立直線和橢圓得到,要使以為直徑的圓過橢圓的左頂點,則,結合韋達定理可得到參數值.【詳解】(1)直線的一般方程為.依題意,解得,故橢圓的方程式為.(2)假若存在這樣的直線,當斜率不存在時,以為直徑的圓顯然不經過橢圓的左頂點,所以可設直線的斜率為,則直線的方程為.由,得.由,得.記,的坐標分別為,,則,,而.要使

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論