Spark大數(shù)據(jù)分析 課件 1.1 大數(shù)據(jù)簡介與相關(guān)技術(shù)_第1頁
Spark大數(shù)據(jù)分析 課件 1.1 大數(shù)據(jù)簡介與相關(guān)技術(shù)_第2頁
Spark大數(shù)據(jù)分析 課件 1.1 大數(shù)據(jù)簡介與相關(guān)技術(shù)_第3頁
Spark大數(shù)據(jù)分析 課件 1.1 大數(shù)據(jù)簡介與相關(guān)技術(shù)_第4頁
Spark大數(shù)據(jù)分析 課件 1.1 大數(shù)據(jù)簡介與相關(guān)技術(shù)_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

大數(shù)據(jù)簡介與相關(guān)技術(shù)目錄/Contents01大數(shù)據(jù)簡介02大數(shù)據(jù)相關(guān)技術(shù)大數(shù)據(jù)簡介01大數(shù)據(jù)簡介大數(shù)據(jù)(bigdata),或稱巨量資料,指的是所涉及的資料量規(guī)模巨大到無法透過目前主流軟件工具,在合理時間內(nèi)達(dá)到獲取、管理、處理、并整理成為幫助企業(yè)經(jīng)營決策更積極目的的資訊。在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數(shù)據(jù)時代》中大數(shù)據(jù)指不用隨機分析法(抽樣調(diào)查)這樣捷徑,而采用所有數(shù)據(jù)進(jìn)行分析處理。大數(shù)據(jù)的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。大數(shù)據(jù)簡介Volume(大量):數(shù)據(jù)量大,截至目前,人類生產(chǎn)的所有印刷材料的數(shù)據(jù)量是200PB,而歷史上全人類總共說過的話的數(shù)據(jù)量大約是5EB。Variety(多樣):種類和來源多樣化。這種類型的多樣性也讓數(shù)據(jù)被分為結(jié)構(gòu)化數(shù)據(jù)和非結(jié)構(gòu)化數(shù)據(jù)。Value(低價值密度):價值密度的高低與數(shù)據(jù)總量的大小成反比。Velocity(高速):數(shù)據(jù)增長速度快,處理速度也快,時效性要求高。這是大數(shù)據(jù)區(qū)分于傳統(tǒng)數(shù)據(jù)挖掘的最顯著特征。Veracity:信數(shù)據(jù)的準(zhǔn)確性和可信賴度,即數(shù)據(jù)的質(zhì)量。大數(shù)據(jù)相關(guān)技術(shù)02大數(shù)據(jù)相關(guān)技術(shù)大數(shù)據(jù)技術(shù)的體系龐大且復(fù)雜,基礎(chǔ)的技術(shù)包含數(shù)據(jù)的采集、數(shù)據(jù)預(yù)處理、分布式存儲、NoSQL數(shù)據(jù)庫、數(shù)據(jù)倉庫、機器學(xué)習(xí)、并行計算、可視化等各種技術(shù)范疇和不同的技術(shù)層面。首先科學(xué)的給出一個通用化的大數(shù)據(jù)處理技術(shù)框架,主要分為下面幾個方面:數(shù)據(jù)采集與預(yù)處理、數(shù)據(jù)存儲、數(shù)據(jù)清洗、數(shù)據(jù)查詢分析和數(shù)據(jù)可視化。大數(shù)據(jù)相關(guān)技術(shù)數(shù)據(jù)采集與預(yù)處理對于各種來源的數(shù)據(jù)包括移動互聯(lián)網(wǎng)數(shù)據(jù)、社交網(wǎng)絡(luò)的數(shù)據(jù)等,這些結(jié)構(gòu)化和非結(jié)構(gòu)化的海量數(shù)據(jù)是零散的,也就是所謂的數(shù)據(jù)孤島,此時的這些數(shù)據(jù)并沒有什么意義,數(shù)據(jù)采集就是將這些數(shù)據(jù)寫入數(shù)據(jù)倉庫中,把零散的數(shù)據(jù)整合在一起,對這些數(shù)據(jù)綜合起來進(jìn)行分析。數(shù)據(jù)采集包括文件日志的采集、數(shù)據(jù)庫日志的采集、關(guān)系型數(shù)據(jù)庫的接入和應(yīng)用程序的接入等。在數(shù)據(jù)量比較小的時候,可以寫個定時的腳本將日志寫入存儲系統(tǒng),但隨著數(shù)據(jù)量的增長,這些方法無法提供數(shù)據(jù)安全保障,并且運維困難,需要更強壯的解決方案。大數(shù)據(jù)相關(guān)技術(shù)數(shù)據(jù)存儲Hadoop作為一個開源的框架,專為離線和大規(guī)模數(shù)據(jù)分析而設(shè)計,HDFS作為其核心的存儲引擎,已被廣泛用于數(shù)據(jù)存儲。數(shù)據(jù)清洗MapReduce作為Hadoop的查詢引擎,用于大規(guī)模數(shù)據(jù)集的并行計算,”Map(映射)”和”Reduce(歸約)”,是它的主要思想。它極大的方便了編程人員在不會分布式并行編程的情況下,將自己的程序運行在分布式系統(tǒng)中。大數(shù)據(jù)相關(guān)技術(shù)數(shù)據(jù)查詢分析Hive的核心工作就是把SQL語句翻譯成MR程序,可以將結(jié)構(gòu)化的數(shù)據(jù)映射為一張數(shù)據(jù)庫表,并提供HQL(HiveSQL)查詢功能。Impala是對Hive的一個補充,可以實現(xiàn)高效的SQL查詢。使用Impala來實現(xiàn)SQLonHadoop,用來進(jìn)行大數(shù)據(jù)實時查詢分析。Spark擁有HadoopMapReduce所具有的特點,它將Job中間輸出結(jié)果保存在內(nèi)存中,從而不需要讀取HDFS。Nutch是一個開源Java實現(xiàn)的搜索引擎。它提供了我們運行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬蟲。Solr用Java編寫、運行在Servlet容器(如ApacheTomcat或Jetty)的一個獨立的企業(yè)級搜索應(yīng)用的全文搜索服務(wù)器。Elasticsearch是一個開源的全文搜索引擎,基于Lucene的搜索服務(wù)器,可以快速的儲存、搜索和分析海量的數(shù)據(jù)。大數(shù)據(jù)相關(guān)技術(shù)數(shù)據(jù)可視化對接一些BI平臺,將分析得到的數(shù)據(jù)進(jìn)行可視化,用于指導(dǎo)決策服務(wù)。主流的BI平臺比如,國外的敏捷BITableau、Qlikview、PowrerBI等,國內(nèi)的SmallBI和新興的有數(shù)BI等??刂茩?quán)限的ranger是一個Hadoop集群權(quán)限框架,提供操作、監(jiān)控、管理復(fù)雜的數(shù)據(jù)權(quán)限,它提供一個集中的管理機制,管理基于yarn的Hadoop生態(tài)圈的所有數(shù)據(jù)權(quán)限??梢詫adoop生態(tài)的組件如Hive,Hbase進(jìn)行細(xì)粒度的數(shù)據(jù)訪問控制。通過操作Ranger控

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論