2025屆福建省仙游縣郊尾中學高三最后一卷數(shù)學試卷含解析_第1頁
2025屆福建省仙游縣郊尾中學高三最后一卷數(shù)學試卷含解析_第2頁
2025屆福建省仙游縣郊尾中學高三最后一卷數(shù)學試卷含解析_第3頁
2025屆福建省仙游縣郊尾中學高三最后一卷數(shù)學試卷含解析_第4頁
2025屆福建省仙游縣郊尾中學高三最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆福建省仙游縣郊尾中學高三最后一卷數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一場考試需要2小時,在這場考試中鐘表的時針轉過的弧度數(shù)為()A. B. C. D.2.高斯是德國著名的數(shù)學家,近代數(shù)學奠基者之一,享有“數(shù)學王子”的稱號,用其名字命名的“高斯函數(shù)”為:設,用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,,已知函數(shù)(),則函數(shù)的值域為()A. B. C. D.3.定義在R上的函數(shù),,若在區(qū)間上為增函數(shù),且存在,使得.則下列不等式不一定成立的是()A. B.C. D.4.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-35.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于6.設復數(shù)z=,則|z|=()A. B. C. D.7.如圖所示,為了測量、兩座島嶼間的距離,小船從初始位置出發(fā),已知在的北偏西的方向上,在的北偏東的方向上,現(xiàn)在船往東開2百海里到達處,此時測得在的北偏西的方向上,再開回處,由向西開百海里到達處,測得在的北偏東的方向上,則、兩座島嶼間的距離為()A.3 B. C.4 D.8.設、是兩條不同的直線,、是兩個不同的平面,則的一個充分條件是()A.且 B.且 C.且 D.且9.如圖所示,三國時代數(shù)學家在《周脾算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一個內角為,若向弦圖內隨機拋擲200顆米粒(大小忽略不計,?。?,則落在小正方形(陰影)內的米粒數(shù)大約為()A.20 B.27 C.54 D.6410.點為棱長是2的正方體的內切球球面上的動點,點為的中點,若滿足,則動點的軌跡的長度為()A. B. C. D.11.如下的程序框圖的算法思路源于我國古代數(shù)學名著《九章算術》中的“更相減損術”.執(zhí)行該程序框圖,若輸入的a,b分別為176,320,則輸出的a為()A.16 B.18 C.20 D.1512.集合,則集合的真子集的個數(shù)是A.1個 B.3個 C.4個 D.7個二、填空題:本題共4小題,每小題5分,共20分。13.下圖是一個算法的流程圖,則輸出的x的值為_______.14.已知平面向量、的夾角為,且,則的最大值是_____.15.某種賭博每局的規(guī)則是:賭客先在標記有1,2,3,4,5的卡片中隨機摸取一張,將卡片上的數(shù)字作為其賭金;隨后放回該卡片,再隨機摸取兩張,將這兩張卡片上數(shù)字之差的絕對值的1.4倍作為其獎金.若隨機變量ξ1和ξ2分別表示賭客在一局賭博中的賭金和獎金,則D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.16.下圖是一個算法流程圖,則輸出的的值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.(Ⅰ)求直線的直角坐標方程與曲線的普通方程;(Ⅱ)已知點設直線與曲線相交于兩點,求的值.18.(12分)如圖,在直角梯形中,,,,為的中點,沿將折起,使得點到點位置,且,為的中點,是上的動點(與點,不重合).(Ⅰ)證明:平面平面垂直;(Ⅱ)是否存在點,使得二面角的余弦值?若存在,確定點位置;若不存在,說明理由.19.(12分)如圖,已知三棱柱中,與是全等的等邊三角形.(1)求證:;(2)若,求二面角的余弦值.20.(12分)在直角坐標系中,點的坐標為,直線的參數(shù)方程為(為參數(shù),為常數(shù),且).以直角坐標系的原點為極點,軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系,圓的極坐標方程為.設點在圓外.(1)求的取值范圍.(2)設直線與圓相交于兩點,若,求的值.21.(12分)如圖,在三棱柱中,是邊長為2的等邊三角形,,,.(1)證明:平面平面;(2),分別是,的中點,是線段上的動點,若二面角的平面角的大小為,試確定點的位置.22.(10分)在ABC中,角A,B,C的對邊分別為a,b,c,已知,(Ⅰ)求的大??;(Ⅱ)若,求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

因為時針經(jīng)過2小時相當于轉了一圈的,且按順時針轉所形成的角為負角,綜合以上即可得到本題答案.【詳解】因為時針旋轉一周為12小時,轉過的角度為,按順時針轉所形成的角為負角,所以經(jīng)過2小時,時針所轉過的弧度數(shù)為.故選:B【點睛】本題主要考查正負角的定義以及弧度制,屬于基礎題.2、B【解析】

利用換元法化簡解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質求得的取值范圍,由此求得的值域.【詳解】因為(),所以,令(),則(),函數(shù)的對稱軸方程為,所以,,所以,所以的值域為.故選:B【點睛】本小題考查函數(shù)的定義域與值域等基礎知識,考查學生分析問題,解決問題的能力,運算求解能力,轉化與化歸思想,換元思想,分類討論和應用意識.3、D【解析】

根據(jù)題意判斷出函數(shù)的單調性,從而根據(jù)單調性對選項逐個判斷即可.【詳解】由條件可得函數(shù)關于直線對稱;在,上單調遞增,且在時使得;又,,所以選項成立;,比離對稱軸遠,可得,選項成立;,,可知比離對稱軸遠,選項成立;,符號不定,,無法比較大小,不一定成立.故選:.【點睛】本題考查了函數(shù)的基本性質及其應用,意在考查學生對這些知識的理解掌握水平和分析推理能力.4、D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數(shù)量積以及投影的應用問題,也考查了數(shù)形結合思想的應用問題.5、C【解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應選答案C.6、D【解析】

先用復數(shù)的除法運算將復數(shù)化簡,然后用模長公式求模長.【詳解】解:z====﹣﹣,則|z|====.故選:D.【點睛】本題考查復數(shù)的基本概念和基本運算,屬于基礎題.7、B【解析】

先根據(jù)角度分析出的大小,然后根據(jù)角度關系得到的長度,再根據(jù)正弦定理計算出的長度,最后利用余弦定理求解出的長度即可.【詳解】由題意可知:,所以,,所以,所以,又因為,所以,所以.故選:B.【點睛】本題考查解三角形中的角度問題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問題的關鍵.8、B【解析】由且可得,故選B.9、B【解析】

設大正方體的邊長為,從而求得小正方體的邊長為,設落在小正方形內的米粒數(shù)大約為,利用概率模擬列方程即可求解?!驹斀狻吭O大正方體的邊長為,則小正方體的邊長為,設落在小正方形內的米粒數(shù)大約為,則,解得:故選:B【點睛】本題主要考查了概率模擬的應用,考查計算能力,屬于基礎題。10、C【解析】

設的中點為,利用正方形和正方體的性質,結合線面垂直的判定定理可以證明出平面,這樣可以確定動點的軌跡,最后求出動點的軌跡的長度.【詳解】設的中點為,連接,因此有,而,而平面,,因此有平面,所以動點的軌跡平面與正方體的內切球的交線.正方體的棱長為2,所以內切球的半徑為,建立如下圖所示的以為坐標原點的空間直角坐標系:因此有,設平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動點的軌跡的長度為.故選:C【點睛】本題考查了線面垂直的判定定理的應用,考查了立體幾何中軌跡問題,考查了球截面的性質,考查了空間想象能力和數(shù)學運算能力.11、A【解析】

根據(jù)題意可知最后計算的結果為的最大公約數(shù).【詳解】輸入的a,b分別為,,根據(jù)流程圖可知最后計算的結果為的最大公約數(shù),按流程圖計算,,,,,,,易得176和320的最大公約數(shù)為16,故選:A.【點睛】本題考查的是利用更相減損術求兩個數(shù)的最大公約數(shù),難度較易.12、B【解析】

由題意,結合集合,求得集合,得到集合中元素的個數(shù),即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個數(shù)為個,故選B.【點睛】本題主要考查了集合的運算和集合中真子集的個數(shù)個數(shù)的求解,其中作出集合的運算,得到集合,再由真子集個數(shù)的公式作出計算是解答的關鍵,著重考查了推理與運算能力.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

利用流程圖,逐次進行運算,直到退出循環(huán),得到輸出值.【詳解】第一次:x=4,y=11,第二次:x=5,y=32,第三次:x=1,y=14,此時14>10×1+3,輸出x,故輸出x的值為1.故答案為:.【點睛】本題主要考查程序框圖的識別,“還原現(xiàn)場”是求解這類問題的良方,側重考查邏輯推理的核心素養(yǎng).14、【解析】

建立平面直角坐標系,設,可得,進而可得出,,由此將轉化為以為自變量的三角函數(shù),利用三角恒等變換思想以及正弦函數(shù)的有界性可得出結果.【詳解】根據(jù)題意建立平面直角坐標系如圖所示,設,,以、為鄰邊作平行四邊形,則,設,則,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,則,當時,取最大值.故答案為:.【點睛】本題考查了向量的數(shù)量積最值的計算,將問題轉化為角的三角函數(shù)的最值問題是解答的關鍵,考查計算能力,屬于難題.15、20.2【解析】

分別求出隨機變量ξ1和ξ2的分布列,根據(jù)期望和方差公式計算得解.【詳解】設a,b∈{1,2,1,4,5},則p(ξ1=a),其ξ1分布列為:ξ112145PE(ξ1)(1+2+1+4+5)=1.D(ξ1)[(1﹣1)2+(2﹣1)2+(1﹣1)2+(4﹣1)2+(5﹣1)2]=2.ξ2=1.4|a﹣b|的可能取值分別為:1.4,2.3,4.2,5.6,P(ξ2=1.4),P(ξ2=2.3),P(ξ2=4.2),P(ξ2=5.6),可得分布列.ξ21.42.34.25.6PE(ξ2)=1.42.34.25.62.3.∴E(ξ1)﹣E(ξ2)=0.2.故答案為:2,0.2.【點睛】此題考查隨機變量及其分布,關鍵在于準確求出隨機變量取值的概率,根據(jù)公式準確計算期望和方差.16、3【解析】

分析程序中各變量、各語句的作用,根據(jù)流程圖所示的順序,即可得出結論.【詳解】解:初始,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;經(jīng)判斷,此時跳出循環(huán),輸出.故答案為:【點睛】本題考查了程序框圖的應用問題,解題的關鍵是對算法語句的理解,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)直線的直角坐標方程為;曲線的普通方程為;(Ⅱ).【解析】

(I)利用參數(shù)方程、普通方程、極坐標方程間的互化公式即可;(II)將直線參數(shù)方程代入拋物線的普通方程,可得,而根據(jù)直線參數(shù)方程的幾何意義,知,代入即可解決.【詳解】由可得直線的直角坐標方程為由曲線的參數(shù)方程,消去參數(shù)可得曲線的普通方程為.易知點在直線上,直線的參數(shù)方程為(為參數(shù)).將直線的參數(shù)方程代入曲線的普通方程,并整理得.設是方程的兩根,則有.【點睛】本題考查參數(shù)方程、普通方程、極坐標方程間的互化,直線參數(shù)方程的幾何意義,是一道容易題.18、(Ⅰ)見解析(Ⅱ)存在,此時為的中點.【解析】

(Ⅰ)證明平面,得到平面平面,故平面平面,平面,得到答案.(Ⅱ)假設存在點滿足題意,過作于,平面,過作于,連接,則,過作于,連接,是二面角的平面角,設,,計算得到答案.【詳解】(Ⅰ)∵,,,∴平面.又平面,∴平面平面,而平面,,∴平面平面,由,知,可知平面,又平面,∴平面平面.(Ⅱ)假設存在點滿足題意,過作于,由知,易證平面,所以平面,過作于,連接,則(三垂線定理),即是二面角的平面角,不妨設,則,在中,設(),由得,即,得,∴,依題意知,即,解得,此時為的中點.綜上知,存在點,使得二面角的余弦值,此時為的中點.【點睛】本題考查了面面垂直,根據(jù)二面角確定點的位置,意在考查學生的空間想象能力和計算能力,也可以建立空間直角坐標系解得答案.19、(1)證明見解析;(2).【解析】

(1)取BC的中點O,則,由是等邊三角形,得,從而得到平面,由此能證明(2)以,,所在直線分別為x,y,z軸建立空間直角坐標系,利用向量法求得二面角的余弦值,得到結果.【詳解】(1)取BC的中點O,連接,,由于與是等邊三角形,所以有,,且,所以平面,平面,所以.(2)設,是全等的等邊三角形,所以,又,由余弦定理可得,在中,有,所以以,,所在直線分別為x,y,z軸建立空間直角坐標系,如圖所示,則,,,設平面的一個法向量為,則,令,則,又平面的一個法向量為,所以二面角的余弦值為,即二面角的余弦值為.【點睛】該題考查的是有關立體幾何的問題,涉及到的知識點有利用線面垂直證明線性垂直,利用向量法求二面角的余弦值,屬于中檔題目.20、(1)(2)【解析】

(1)首先將曲線化為直角坐標方程,由點在圓外,則解得即可;(2)將直線的參數(shù)方程代入圓的普通方程,設、對應的參數(shù)分別為,列出韋達定理,由及在圓的上方,得,即即可解得;【詳解】解:(1)曲線的直角坐標方程為.由點在圓外,得點的坐標為,結合,解得.故的取值范圍是.(2)由直線的參數(shù)方程,得直線過點,傾斜角為,將直線的參數(shù)方程代入,并整理得,其中.設、對應的參數(shù)分別為,則,.由及在圓的上方,得,即,代入①,得,,消去,得,結合,解得.故的值是.【點睛】本題考查極坐標方程化為直角坐標方程,直線的參數(shù)方程的幾何意義的應用,屬于中檔題.21、(1)證明見解析;(2)為線段上靠近點的四等分點,且坐標為【解析】

(1)先通過線面垂直的判定定理證明平面,再根據(jù)面面垂直的判定定理即可證明;(2)分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論