版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江西省贛州市十五縣市2025屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.2.如圖,矩形ABCD中,,,E是AD的中點(diǎn),將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個(gè)命題:①對(duì)滿足題意的任意的的位置,;②對(duì)滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立3.設(shè),點(diǎn),,,,設(shè)對(duì)一切都有不等式成立,則正整數(shù)的最小值為()A. B. C. D.4.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數(shù),那么a+b的值是A. B.C. D.5.如圖,正方形網(wǎng)格紙中的實(shí)線圖形是一個(gè)多面體的三視圖,則該多面體各表面所在平面互相垂直的有()A.2對(duì) B.3對(duì)C.4對(duì) D.5對(duì)6.已知雙曲線滿足以下條件:①雙曲線E的右焦點(diǎn)與拋物線的焦點(diǎn)F重合;②雙曲線E與過點(diǎn)的冪函數(shù)的圖象交于點(diǎn)Q,且該冪函數(shù)在點(diǎn)Q處的切線過點(diǎn)F關(guān)于原點(diǎn)的對(duì)稱點(diǎn).則雙曲線的離心率是()A. B. C. D.7.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.8.拋物線方程為,一直線與拋物線交于兩點(diǎn),其弦的中點(diǎn)坐標(biāo)為,則直線的方程為()A. B. C. D.9.將一張邊長為的紙片按如圖(1)所示陰影部分裁去四個(gè)全等的等腰三角形,將余下部分沿虛線折疊并拼成一個(gè)有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是()A. B. C. D.10.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]11.如圖所示的程序框圖,當(dāng)其運(yùn)行結(jié)果為31時(shí),則圖中判斷框①處應(yīng)填入的是()A. B. C. D.12.如果,那么下列不等式成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)若關(guān)于的不等式的解集是,則的值為_____.14.某地區(qū)連續(xù)5天的最低氣溫(單位:℃)依次為8,,,0,2,則該組數(shù)據(jù)的標(biāo)準(zhǔn)差為_______.15.設(shè)α、β為互不重合的平面,m,n是互不重合的直線,給出下列四個(gè)命題:①若m∥n,則m∥α;②若m?α,n?α,m∥β,n∥β,則α∥β;③若α∥β,m?α,n?β,則m∥n;④若α⊥β,α∩β=m,n?α,m⊥n,則n⊥β;其中正確命題的序號(hào)為_____.16.已知矩形ABCD,AB=4,BC=3,以A,B為焦點(diǎn),且過C,D兩點(diǎn)的雙曲線的離心率為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點(diǎn),.(1)求線段的長.(2)若為線段上一點(diǎn),且,求二面角的余弦值.18.(12分)設(shè)為等差數(shù)列的前項(xiàng)和,且,.(1)求數(shù)列的通項(xiàng)公式;(2)若滿足不等式的正整數(shù)恰有個(gè),求正實(shí)數(shù)的取值范圍.19.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點(diǎn).(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關(guān)系,并給出證明.20.(12分)已知函數(shù),函數(shù)().(1)討論的單調(diào)性;(2)證明:當(dāng)時(shí),.(3)證明:當(dāng)時(shí),.21.(12分)某公司打算引進(jìn)一臺(tái)設(shè)備使用一年,現(xiàn)有甲、乙兩種設(shè)備可供選擇.甲設(shè)備每臺(tái)10000元,乙設(shè)備每臺(tái)9000元.此外設(shè)備使用期間還需維修,對(duì)于每臺(tái)設(shè)備,一年間三次及三次以內(nèi)免費(fèi)維修,三次以外的維修費(fèi)用均為每次1000元.該公司統(tǒng)計(jì)了曾使用過的甲、乙各50臺(tái)設(shè)備在一年間的維修次數(shù),得到下面的頻數(shù)分布表,以這兩種設(shè)備分別在50臺(tái)中的維修次數(shù)頻率代替維修次數(shù)發(fā)生的概率.維修次數(shù)23456甲設(shè)備5103050乙設(shè)備05151515(1)設(shè)甲、乙兩種設(shè)備每臺(tái)購買和一年間維修的花費(fèi)總額分別為和,求和的分布列;(2)若以數(shù)學(xué)期望為決策依據(jù),希望設(shè)備購買和一年間維修的花費(fèi)總額盡量低,且維修次數(shù)盡量少,則需要購買哪種設(shè)備?請(qǐng)說明理由.22.(10分)在ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知,(Ⅰ)求的大?。唬á颍┤?,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
設(shè)非零向量與的夾角為,在等式兩邊平方,求出的值,進(jìn)而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點(diǎn)睛】本題考查向量投影的計(jì)算,同時(shí)也考查利用向量的模計(jì)算向量的夾角,考查計(jì)算能力,屬于基礎(chǔ)題.2、A【解析】
作出二面角的補(bǔ)角、線面角、線線角的補(bǔ)角,由此判斷出兩個(gè)命題的正確性.【詳解】①如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A【點(diǎn)睛】本題考查了折疊問題、空間角、數(shù)形結(jié)合方法,考查了推理能力與計(jì)算能力,屬于中檔題.3、A【解析】
先求得,再求得左邊的范圍,只需,利用單調(diào)性解得t的范圍.【詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數(shù)的最小值為3.【點(diǎn)睛】本題考查了數(shù)列的通項(xiàng)及求和問題,考查了數(shù)列的單調(diào)性及不等式的解法,考查了轉(zhuǎn)化思想,屬于中檔題.4、B【解析】
依照偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x),且定義域關(guān)于原點(diǎn)對(duì)稱,a﹣1=﹣2a,即可得解.【詳解】根據(jù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,且f(x)是定義在[a–1,2a]上的偶函數(shù),得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點(diǎn)睛】本題考查偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關(guān)于原點(diǎn)對(duì)稱,定義域區(qū)間兩個(gè)端點(diǎn)互為相反數(shù).5、C【解析】
畫出該幾何體的直觀圖,易證平面平面,平面平面,平面平面,平面平面,從而可選出答案.【詳解】該幾何體是一個(gè)四棱錐,直觀圖如下圖所示,易知平面平面,作PO⊥AD于O,則有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面平面,同理可證:平面平面,由三視圖可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面平面,所以該多面體各表面所在平面互相垂直的有4對(duì).【點(diǎn)睛】本題考查了空間幾何體的三視圖,考查了四棱錐的結(jié)構(gòu)特征,考查了面面垂直的證明,屬于中檔題.6、B【解析】
由已知可求出焦點(diǎn)坐標(biāo)為,可求得冪函數(shù)為,設(shè)出切點(diǎn)通過導(dǎo)數(shù)求出切線方程的斜率,利用斜率相等列出方程,即可求出切點(diǎn)坐標(biāo),然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點(diǎn)為,F(xiàn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn);,,所以,,設(shè),則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.【點(diǎn)睛】本題考查雙曲線的性質(zhì),已知拋物線方程求焦點(diǎn)坐標(biāo),求冪函數(shù)解析式,直線的斜率公式及導(dǎo)數(shù)的幾何意義,考查了學(xué)生分析問題和解決問題的能力,難度一般.7、C【解析】
畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可.【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長為2,
該幾何體的表面積:.故選C.【點(diǎn)睛】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關(guān)鍵.8、A【解析】
設(shè),,利用點(diǎn)差法得到,所以直線的斜率為2,又過點(diǎn),再利用點(diǎn)斜式即可得到直線的方程.【詳解】解:設(shè),∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點(diǎn),∴直線的方程為:,即,故選:A.【點(diǎn)睛】本題考查直線與拋物線相交的中點(diǎn)弦問題,解題方法是“點(diǎn)差法”,即設(shè)出弦的兩端點(diǎn)坐標(biāo),代入拋物線方程相減后可把弦所在直線斜率與中點(diǎn)坐標(biāo)建立關(guān)系.9、B【解析】設(shè)折成的四棱錐的底面邊長為,高為,則,故由題設(shè)可得,所以四棱錐的體積,應(yīng)選答案B.10、D【解析】
由題意作出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),數(shù)形結(jié)合即可得解.【詳解】由題意作出可行域,如圖,目標(biāo)函數(shù)可表示連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.【點(diǎn)睛】本題考查了非線性規(guī)劃的應(yīng)用,屬于基礎(chǔ)題.11、C【解析】
根據(jù)程序框圖的運(yùn)行,循環(huán)算出當(dāng)時(shí),結(jié)束運(yùn)行,總結(jié)分析即可得出答案.【詳解】由題可知,程序框圖的運(yùn)行結(jié)果為31,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.此時(shí)輸出.故選:C.【點(diǎn)睛】本題考查根據(jù)程序框圖的循環(huán)結(jié)構(gòu),已知輸出結(jié)果求條件框,屬于基礎(chǔ)題.12、D【解析】
利用函數(shù)的單調(diào)性、不等式的基本性質(zhì)即可得出.【詳解】∵,∴,,,.故選:D.【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性比較大小,考查不等式的性質(zhì),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意可知的兩根為,再根據(jù)解集的區(qū)間端點(diǎn)得出參數(shù)的關(guān)系,再求解即可.【詳解】解:因?yàn)楹瘮?shù),關(guān)于的不等式的解集是的兩根為:和;所以有:且;且;;故答案為:【點(diǎn)睛】本題主要考查了不等式的解集與參數(shù)之間的關(guān)系,屬于基礎(chǔ)題.14、【解析】
先求出這組數(shù)據(jù)的平均數(shù),再求出這組數(shù)據(jù)的方差,由此能求出該組數(shù)據(jù)的標(biāo)準(zhǔn)差.【詳解】解:某地區(qū)連續(xù)5天的最低氣溫(單位:依次為8,,,0,2,平均數(shù)為:,該組數(shù)據(jù)的方差為:,該組數(shù)據(jù)的標(biāo)準(zhǔn)差為1.故答案為:1.【點(diǎn)睛】本題考查一組數(shù)據(jù)據(jù)的標(biāo)準(zhǔn)差的求法,考查平均數(shù)、方差、標(biāo)準(zhǔn)差的定義等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.15、④【解析】
根據(jù)直線和平面,平面和平面的位置關(guān)系依次判斷每個(gè)選項(xiàng)得到答案.【詳解】對(duì)于①,當(dāng)m∥n時(shí),由直線與平面平行的定義和判定定理,不能得出m∥α,①錯(cuò)誤;對(duì)于②,當(dāng)m?α,n?α,且m∥β,n∥β時(shí),由兩平面平行的判定定理,不能得出α∥β,②錯(cuò)誤;對(duì)于③,當(dāng)α∥β,且m?α,n?β時(shí),由兩平面平行的性質(zhì)定理,不能得出m∥n,③錯(cuò)誤;對(duì)于④,當(dāng)α⊥β,且α∩β=m,n?α,m⊥n時(shí),由兩平面垂直的性質(zhì)定理,能夠得出n⊥β,④正確;綜上知,正確命題的序號(hào)是④.故答案為:④.【點(diǎn)睛】本題考查了直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的空間想象能力和推斷能力.16、2【解析】
根據(jù)為焦點(diǎn),得;又求得,從而得到離心率.【詳解】為焦點(diǎn)在雙曲線上,則又本題正確結(jié)果:【點(diǎn)睛】本題考查利用雙曲線的定義求解雙曲線的離心率問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的長為4(2)【解析】
(1)分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,設(shè),根據(jù)向量垂直關(guān)系計(jì)算得到答案.(2)計(jì)算平面的法向量為,為平面的一個(gè)法向量,再計(jì)算向量夾角得到答案.【詳解】(1)分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系.設(shè),則,所以.,因?yàn)椋?,即,解得,所以的長為4.(2)因?yàn)?,所以,又,?設(shè)為平面的法向量,則即取,解得,所以為平面的一個(gè)法向量.顯然,為平面的一個(gè)法向量,則,據(jù)圖可知,二面角的余弦值為.【點(diǎn)睛】本題考查了立體幾何中的線段長度,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.18、(1);(2).【解析】
(1)設(shè)等差數(shù)列的公差為,根據(jù)題意得出關(guān)于和的方程組,解出這兩個(gè)量的值,然后利用等差數(shù)列的通項(xiàng)公式可得出數(shù)列的通項(xiàng)公式;(2)求出,可得出,可知當(dāng)為奇數(shù)時(shí)不等式不成立,只考慮為偶數(shù)的情況,利用數(shù)列單調(diào)性的定義判斷數(shù)列中偶數(shù)項(xiàng)構(gòu)成的數(shù)列的單調(diào)性,由此能求出正實(shí)數(shù)的取值范圍.【詳解】(1)設(shè)等差數(shù)列的公差為,則,整理得,解得,,因此,;(2),滿足不等式的正整數(shù)恰有個(gè),得,由于,若為奇數(shù),則不等式不可能成立.只考慮為偶數(shù)的情況,令,則,..當(dāng)時(shí),,則;當(dāng)時(shí),,則;當(dāng)時(shí),,則.所以,,又,,,,.因此,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查數(shù)列的通項(xiàng)公式的求法,考查正實(shí)數(shù)的取值范圍的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.19、(1)(2)(3)直線平面,證明見解析【解析】
取中點(diǎn),連接,則,再由已知證明平面,以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量.(1)求出的坐標(biāo),由與所成角的余弦值可得直線與平面所成角的正弦值;(2)求出平面的一個(gè)法向量,再由兩平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐標(biāo),由,結(jié)合平面,可得直線平面.【詳解】底面是邊長為2的菱形,,為等邊三角形.取中點(diǎn),連接,則,為等邊三角形,,又平面平面,且平面平面,平面.以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸建立空間直角坐標(biāo)系.則,,,,1,,,0,,,,,,0,,,,,,,.,,設(shè)平面的一個(gè)法向量為.由,取,得.(1)證明:設(shè)直線與平面所成角為,,則,即直線與平面所成角的正弦值為;(2)設(shè)平面的一個(gè)法向量為,由,得二面角的余弦值為;(3),,又平面,直線平面.【點(diǎn)睛】本題考查線面平行的證明,考查二面角的余弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查推理能力與計(jì)算能力,屬于中檔題.20、(1)答案不唯一,具體見解析(2)證明見解析(3)證明見解析【解析】
(1)求出的定義域,導(dǎo)函數(shù),對(duì)參數(shù)、分類討論得到答案.(2)設(shè)函數(shù),求導(dǎo)說明函數(shù)的單調(diào)性,求出函數(shù)的最大值,即可得證.(3)由(1)可知,可得,即又即可得證.【詳解】(1)解:的定義域?yàn)?,,?dāng),時(shí),,則在上單調(diào)遞增;當(dāng),時(shí),令,得,令,得,則在上單調(diào)遞減,在上單調(diào)遞增;當(dāng),時(shí),,則在上單調(diào)遞減;當(dāng),時(shí),令,得,令,得,則在上單調(diào)遞增,在上單調(diào)遞減;(2)證明:設(shè)函數(shù),則.因?yàn)椋裕?,則,從而在上單調(diào)遞減,所以,即.(3)證明:當(dāng)時(shí),.由(1)知,,所以,即.當(dāng)時(shí),,,則,即,又,所以,即.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性,利用導(dǎo)數(shù)證明不等式,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024影視劇《逆時(shí)光》化妝團(tuán)隊(duì)外包協(xié)議
- 3 《鴻門宴》(說課稿)-2024-2025學(xué)年高一語文下學(xué)期同步教學(xué)說課稿專輯(統(tǒng)編版必修下冊(cè))
- 七夕節(jié)的歷史脈絡(luò)
- 科學(xué)探索之門
- 綠色農(nóng)業(yè):致未來
- 塔式起重機(jī)造價(jià)協(xié)議書(2篇)
- 多人租車協(xié)議書(2篇)
- 專業(yè)化櫥柜工程服務(wù)安裝協(xié)議2024參考資料版B版
- 2025版蟲草養(yǎng)生產(chǎn)品研發(fā)與銷售合作協(xié)議范本3篇
- 2024年設(shè)備購買協(xié)議模板大全實(shí)操版版B版
- 洗衣店行業(yè)創(chuàng)業(yè)計(jì)劃書
- 醫(yī)院規(guī)劃發(fā)展部社會(huì)工作科職責(zé)
- 古詩文系列課件模板-清平調(diào)·其一
- 2024抗菌藥物分級(jí)管理及臨床合理應(yīng)用考核試題及答案
- 樁身完整性考試試題及完整答案(包括低應(yīng)變、鉆芯、聲波透射法)
- 儲(chǔ)能系統(tǒng)的應(yīng)急預(yù)案措施
- 大學(xué)生心理健康教育教學(xué)進(jìn)度計(jì)劃表
- 班主任育人故事(通用17篇)
- 類文閱讀:一起長大的玩具(金波)
- 食品公司冷庫崗位風(fēng)險(xiǎn)告知卡
- 崗位安全培訓(xùn)考試題參考答案
評(píng)論
0/150
提交評(píng)論