版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
裝訂線裝訂線PAGE2第1頁,共3頁圖木舒克職業(yè)技術(shù)學(xué)院《專業(yè)導(dǎo)論(軟件工程)》
2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能中的預(yù)訓(xùn)練語言模型,如GPT-3,在自然語言處理任務(wù)中取得了顯著成果。假設(shè)要將預(yù)訓(xùn)練語言模型應(yīng)用于特定領(lǐng)域的文本分類任務(wù),以下關(guān)于預(yù)訓(xùn)練模型應(yīng)用的描述,正確的是:()A.可以直接使用預(yù)訓(xùn)練模型進(jìn)行分類,無需任何微調(diào)就能獲得良好的效果B.預(yù)訓(xùn)練模型的參數(shù)是固定的,不能根據(jù)新的任務(wù)和數(shù)據(jù)進(jìn)行調(diào)整C.在預(yù)訓(xùn)練模型的基礎(chǔ)上,使用特定領(lǐng)域的數(shù)據(jù)進(jìn)行微調(diào),可以提高在該領(lǐng)域任務(wù)中的性能D.預(yù)訓(xùn)練語言模型對(duì)計(jì)算資源要求不高,任何設(shè)備都能輕松應(yīng)用2、在人工智能的模型評(píng)估中,需要選擇合適的指標(biāo)來衡量模型的性能。假設(shè)一個(gè)圖像分類模型,以下關(guān)于模型評(píng)估指標(biāo)的描述,正確的是:()A.準(zhǔn)確率是唯一重要的評(píng)估指標(biāo),其他指標(biāo)如召回率和F1值都不重要B.對(duì)于不平衡的數(shù)據(jù)集,準(zhǔn)確率可能會(huì)產(chǎn)生誤導(dǎo),應(yīng)該使用更合適的指標(biāo)如召回率和F1值C.模型評(píng)估指標(biāo)只與模型的架構(gòu)有關(guān),與數(shù)據(jù)分布無關(guān)D.選擇評(píng)估指標(biāo)時(shí)不需要考慮具體的應(yīng)用場(chǎng)景和需求3、人工智能中的“膠囊網(wǎng)絡(luò)(CapsuleNetwork)”的主要優(yōu)勢(shì)是?()A.對(duì)姿態(tài)和變形的魯棒性B.減少參數(shù)數(shù)量C.提高訓(xùn)練速度D.增強(qiáng)可解釋性4、人工智能在教育領(lǐng)域的應(yīng)用逐漸興起。假設(shè)要開發(fā)一個(gè)智能輔導(dǎo)系統(tǒng),以下關(guān)于這種系統(tǒng)的描述,正確的是:()A.智能輔導(dǎo)系統(tǒng)能夠根據(jù)每個(gè)學(xué)生的學(xué)習(xí)進(jìn)度和特點(diǎn),提供個(gè)性化的學(xué)習(xí)方案B.智能輔導(dǎo)系統(tǒng)可以完全取代教師的作用,學(xué)生無需與教師進(jìn)行交流C.智能輔導(dǎo)系統(tǒng)的效果只取決于系統(tǒng)的功能,與學(xué)生的學(xué)習(xí)態(tài)度和習(xí)慣無關(guān)D.智能輔導(dǎo)系統(tǒng)不需要考慮教育倫理和學(xué)生隱私保護(hù)問題5、在人工智能的圖像分割任務(wù)中,需要將圖像劃分成不同的區(qū)域。假設(shè)要對(duì)醫(yī)學(xué)影像中的病變區(qū)域進(jìn)行分割,以下關(guān)于圖像分割技術(shù)的描述,正確的是:()A.傳統(tǒng)的圖像分割方法在處理復(fù)雜的醫(yī)學(xué)影像時(shí)效果總是優(yōu)于深度學(xué)習(xí)方法B.深度學(xué)習(xí)中的全卷積神經(jīng)網(wǎng)絡(luò)(FCN)在醫(yī)學(xué)圖像分割中能夠自動(dòng)學(xué)習(xí)特征,具有很大的潛力C.圖像分割的結(jié)果只取決于所使用的算法,與圖像的質(zhì)量和分辨率無關(guān)D.圖像分割技術(shù)在醫(yī)學(xué)領(lǐng)域的應(yīng)用已經(jīng)非常成熟,不需要進(jìn)一步的研究和改進(jìn)6、在人工智能的智能客服中,以下哪個(gè)能力對(duì)于提高用戶滿意度最重要?()A.快速準(zhǔn)確地回答問題B.理解用戶的情感和意圖C.提供個(gè)性化的服務(wù)D.主動(dòng)引導(dǎo)用戶進(jìn)行交流7、人工智能中的語音識(shí)別技術(shù)在智能語音交互中起著重要作用。假設(shè)我們要提高語音識(shí)別系統(tǒng)在嘈雜環(huán)境下的性能,以下關(guān)于解決方法的說法,哪一項(xiàng)是不正確的?()A.使用更先進(jìn)的聲學(xué)模型B.增加訓(xùn)練數(shù)據(jù)的多樣性C.降低語音信號(hào)的采樣率D.采用噪聲抑制技術(shù)8、人工智能中的強(qiáng)化學(xué)習(xí)算法可以分為基于值函數(shù)的方法和基于策略的方法。以下關(guān)于這兩種方法的描述,不正確的是()A.基于值函數(shù)的方法通過估計(jì)狀態(tài)值或動(dòng)作值來選擇最優(yōu)動(dòng)作B.基于策略的方法直接學(xué)習(xí)策略函數(shù),輸出動(dòng)作的概率分布C.基于值函數(shù)的方法和基于策略的方法不能結(jié)合使用,只能選擇其一D.這兩種方法各有優(yōu)缺點(diǎn),在不同的應(yīng)用場(chǎng)景中表現(xiàn)不同9、在人工智能的文本分類任務(wù)中,類別不平衡是一個(gè)常見的問題。假設(shè)一個(gè)數(shù)據(jù)集包含大量屬于某一主要類別的樣本,而其他類別的樣本數(shù)量較少。以下哪種方法在處理類別不平衡問題時(shí)最為有效,能夠提高少數(shù)類別的分類性能?()A.重采樣技術(shù)B.代價(jià)敏感學(xué)習(xí)C.特征選擇D.以上方法綜合運(yùn)用10、人工智能中的多模態(tài)學(xué)習(xí)旨在融合多種不同類型的數(shù)據(jù),如圖像、文本、音頻等。假設(shè)要開發(fā)一個(gè)能夠同時(shí)理解視頻中的圖像內(nèi)容和音頻解說的系統(tǒng),以下哪種多模態(tài)學(xué)習(xí)方法在整合和理解這些異構(gòu)數(shù)據(jù)方面表現(xiàn)更為出色?()A.早期融合B.晚期融合C.注意力機(jī)制D.混合融合11、情感計(jì)算是人工智能的一個(gè)新興領(lǐng)域,旨在讓計(jì)算機(jī)理解和處理人類的情感。假設(shè)要開發(fā)一個(gè)能夠識(shí)別用戶情感狀態(tài)的系統(tǒng)。以下關(guān)于情感計(jì)算的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過分析語音、面部表情和文本等多模態(tài)信息來判斷情感B.情感計(jì)算的應(yīng)用可以包括心理咨詢、客戶服務(wù)等領(lǐng)域C.目前的情感計(jì)算技術(shù)已經(jīng)能夠準(zhǔn)確無誤地識(shí)別和理解所有復(fù)雜的人類情感D.情感模型的訓(xùn)練需要大量標(biāo)注了情感標(biāo)簽的數(shù)據(jù)12、在人工智能的機(jī)器學(xué)習(xí)算法中,決策樹是一種常見的算法。假設(shè)我們要根據(jù)一些用戶的特征來預(yù)測(cè)他們是否會(huì)購買某款產(chǎn)品,使用決策樹進(jìn)行建模。那么,關(guān)于決策樹的特點(diǎn),以下哪一項(xiàng)是不正確的?()A.易于理解和解釋,生成的決策規(guī)則清晰明了B.對(duì)數(shù)據(jù)的噪聲和缺失值比較敏感C.能夠處理非線性關(guān)系的數(shù)據(jù)D.決策樹的構(gòu)建不需要進(jìn)行特征選擇13、人工智能在智能交通系統(tǒng)中的應(yīng)用可以改善交通流量和安全性。假設(shè)要開發(fā)一個(gè)能夠?qū)崟r(shí)優(yōu)化交通信號(hào)燈的系統(tǒng),以下關(guān)于考慮交通狀況多樣性的方法,哪一項(xiàng)是最關(guān)鍵的?()A.只考慮當(dāng)前道路的車流量,不考慮周邊道路的情況B.綜合考慮不同時(shí)間段、天氣條件和特殊事件等對(duì)交通的影響C.按照固定的模式設(shè)置交通信號(hào)燈,不進(jìn)行實(shí)時(shí)調(diào)整D.忽略行人的需求,只關(guān)注車輛的通行14、在人工智能的情感計(jì)算領(lǐng)域,除了文本和語音,面部表情的分析也具有重要意義。假設(shè)要開發(fā)一個(gè)能夠?qū)崟r(shí)分析人類面部表情來推斷情感狀態(tài)的系統(tǒng),以下哪種方法在準(zhǔn)確性和實(shí)時(shí)性方面面臨更大的挑戰(zhàn)?()A.基于傳統(tǒng)計(jì)算機(jī)視覺的方法B.基于深度學(xué)習(xí)的方法C.基于傳感器的方法D.以上方法難度相當(dāng)15、人工智能中的人工神經(jīng)網(wǎng)絡(luò)具有強(qiáng)大的學(xué)習(xí)能力。假設(shè)我們正在訓(xùn)練一個(gè)多層神經(jīng)網(wǎng)絡(luò)來預(yù)測(cè)股票價(jià)格的走勢(shì)。如果網(wǎng)絡(luò)的訓(xùn)練數(shù)據(jù)包含了過多的噪聲,會(huì)產(chǎn)生什么后果?()A.網(wǎng)絡(luò)的泛化能力增強(qiáng)B.網(wǎng)絡(luò)的訓(xùn)練速度加快C.網(wǎng)絡(luò)可能對(duì)新的數(shù)據(jù)預(yù)測(cè)不準(zhǔn)確D.網(wǎng)絡(luò)的結(jié)構(gòu)變得更加復(fù)雜二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)談?wù)勅斯ぶ悄茉诮鹑谛袠I(yè)的創(chuàng)新應(yīng)用。2、(本題5分)說明密度聚類算法的特點(diǎn)和應(yīng)用。3、(本題5分)說明自動(dòng)駕駛中的人工智能技術(shù)。4、(本題5分)說明局部可解釋模型-解釋(LIME)的原理。三、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)利用Python的Scikit-learn庫,實(shí)現(xiàn)一個(gè)決策樹算法對(duì)乳腺癌數(shù)據(jù)集進(jìn)行分類。展示決策樹的生成過程,通過交叉驗(yàn)證選擇最優(yōu)的超參數(shù),并計(jì)算模型在測(cè)試集上的F1分?jǐn)?shù)。2、(本題5分)運(yùn)用Python的OpenCV庫,實(shí)現(xiàn)對(duì)視頻中的運(yùn)動(dòng)目標(biāo)進(jìn)行檢測(cè)和計(jì)數(shù)。使用背景減除算法或光流法,實(shí)時(shí)統(tǒng)計(jì)運(yùn)動(dòng)目標(biāo)的數(shù)量和運(yùn)動(dòng)軌跡。3、(本題5分)基于Python的OpenCV庫和深度學(xué)習(xí)框架,實(shí)現(xiàn)一個(gè)實(shí)時(shí)的車牌號(hào)碼識(shí)別系統(tǒng)。能夠在不同天氣和光照條件下準(zhǔn)確識(shí)別出車牌號(hào)碼,并進(jìn)行實(shí)時(shí)的數(shù)據(jù)庫更新和查詢。4、(本題5分)使用聚類算法對(duì)客戶數(shù)據(jù)進(jìn)行細(xì)分,以便企業(yè)更好地了解客戶群體,制定針對(duì)性的營(yíng)銷策略。5、(本題5分)使用聚類算法對(duì)醫(yī)學(xué)圖像數(shù)據(jù)進(jìn)行分析,發(fā)現(xiàn)不同的病理特征和疾病類型,輔助醫(yī)生進(jìn)行診斷。四、案例分析題(本大題共4個(gè)小題,共40分)1、(本題10分)分析一個(gè)基于人工智能的民間舞蹈創(chuàng)作
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年煉油、化工生產(chǎn)專用設(shè)備項(xiàng)目建議書
- 2025年全自動(dòng)精密貼片機(jī)項(xiàng)目建議書
- 釀酒廠鏟車租賃合同
- 垃圾處理瓦工施工合同范本
- 倉儲(chǔ)物流派遣服務(wù)方案
- 建筑工程施工合同:城市道路工程
- 歷史建筑保護(hù)塔吊施工協(xié)議
- 員工招聘與選拔流程
- 2024年行政執(zhí)行協(xié)議約定版B版
- 5G覆蓋二手房交易合同模板
- 三級(jí)安全教育試題(公司級(jí)、部門級(jí)、班組級(jí))
- 2024年金融工作會(huì)議
- 2024年人教版八年級(jí)生物上冊(cè)期末考試卷(附答案)
- 2024年叉車租賃合同經(jīng)典版(四篇)
- 環(huán)保工程施工安全檢查表
- 人教版五年級(jí)上冊(cè)數(shù)學(xué)期末考試試卷含答案
- 小學(xué)科學(xué)青島版(六三制)六年級(jí)上冊(cè)全冊(cè)教案(共25課)(2022秋)
- 2024焊接工藝規(guī)程
- 外研版(2024新版)七年級(jí)上冊(cè)英語期末復(fù)習(xí)Unit1~6共6套學(xué)業(yè)質(zhì)量檢測(cè)試卷匯編(含答案)
- 藥理學(xué)期末試卷
- 小學(xué)高年級(jí)課后服務(wù) scratch3.0編程教學(xué)設(shè)計(jì) 一階第27課 植物大戰(zhàn)僵尸-僵尸來襲教學(xué)設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論