版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024-2025學(xué)年天津市西青區(qū)高三上學(xué)期期中考試數(shù)學(xué)檢測(cè)試卷一、單選題(每個(gè)4分)1.已知集合,,則()A. B. C. D.2.()A. B. C. D.3.若,且,則函數(shù)的圖象大致是()A. B.C. D.4.已知,,,則a,b,c的大小關(guān)系是()A. B. C. D.5.若實(shí)數(shù),則的最大值為()A. B. C.4 D.66.若,,則的值是()A.3 B. C.8 D.7.已知角是第四象限的角,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.下列命題中是假命題的是A.存在,使B.對(duì)任意,有C.△中,的充要條件是D.對(duì)任意,函數(shù)都不是偶函數(shù)9已知函數(shù),則A.f(x)的最小正周期為π B.f(x)為偶函數(shù)C.f(x)的圖象關(guān)于對(duì)稱 D.為奇函數(shù)10.已知,則函數(shù)的值域是()A. B. C. D.11.已知函數(shù),若,則取值范圍是()A. B. C. D.12.已知直線是函數(shù)的一條對(duì)稱軸,則的一個(gè)單調(diào)遞減區(qū)間是A. B. C. D.13.設(shè)函數(shù),則使得成立的的取值范圍是()A. B. C. D.二、填空題(每個(gè)4分)14.函數(shù)的定義域?yàn)開_____15.設(shè)函數(shù),若是函數(shù)的一個(gè)零點(diǎn),則實(shí)數(shù)______.16.冪函數(shù)在上是減函數(shù),則的值為______.17.在中三個(gè)內(nèi)角分別A,B,C且,,則角________18.已知函數(shù),滿足對(duì)任意實(shí)數(shù)且,都有,則實(shí)數(shù)a的取值范圍是______.19.已知是定義在上的增函數(shù),且,則的取值范圍是______.20.已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),,則當(dāng)時(shí),__________.21.函數(shù)的單調(diào)遞增區(qū)間是________.22.設(shè),,,若,,則的最大值為__________.23.已知,若互不相等,且,則的范圍是_______.三、解答題24.在中,角,,的對(duì)邊分別為,,,.(1)求;(2)若的面積為,周長(zhǎng)為8,求.25.設(shè)函數(shù)在處取得極值.(1)求的解析式;(2)當(dāng)時(shí),求函數(shù)最值.26.如圖,平面,,,,,點(diǎn)E,F(xiàn),M分別為AP,CD,BQ的中點(diǎn).(1)求證:平面CPM;(2)求平面QPM與直線PC所成角的余弦值;(3)若N為線段CQ上點(diǎn),直線DN與平面QPM所成的角為,求N到平面CPM的距離.27.已知函數(shù).(1)當(dāng)時(shí),求函數(shù)在處切線方程;(2)求函數(shù)的單調(diào)區(qū)間;(3)若,不等式在上存在實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.2024-2025學(xué)年天津市西青區(qū)高三上學(xué)期期中考試數(shù)學(xué)檢測(cè)試卷一、單選題(每個(gè)4分)1.已知集合,,則()A. B. C. D.【正確答案】A【分析】先解對(duì)數(shù)不等式及函數(shù)值域分別求出集合,再應(yīng)用并集定義計(jì)算即可.【詳解】因?yàn)?,所以,所以,因?yàn)?,所以,,所?故選:A.2.()A. B. C. D.【正確答案】B【分析】根據(jù)余弦的二倍角公式即可求解.【詳解】.故選:B3.若,且,則函數(shù)的圖象大致是()A. B.C. D.【正確答案】A【分析】根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)可得,再根據(jù)函數(shù)圖象平移判斷即可.【詳解】因?yàn)?,且,故,故為減函數(shù),且過1,0,又的圖象為的圖象向右平移1個(gè)單位,則A滿足.故選:A4.已知,,,則a,b,c的大小關(guān)系是()A. B. C. D.【正確答案】A【分析】根據(jù)指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性可得正確的選項(xiàng).【詳解】,,,所以.故選:A.5.若實(shí)數(shù),則的最大值為()A. B. C.4 D.6【正確答案】A【分析】用配湊法結(jié)合基本不等式求解即可;【詳解】實(shí)數(shù),當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,函數(shù)的最大值為,故選:A.6.若,,則的值是()A.3 B. C.8 D.【正確答案】A【分析】根據(jù)給定條件,利用指數(shù)式與對(duì)數(shù)式互化關(guān)系及對(duì)數(shù)換底公式及運(yùn)算法則計(jì)算即得.【詳解】由,得,而,所以.故選:A7.已知角是第四象限的角,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【正確答案】A【分析】根據(jù)余弦函數(shù)定義及充分不必要定義判斷即可.【詳解】因?yàn)?,所?即“”是“”的充分條件;若取,它們都是第四象限的角,且滿足,但,即“”不是“”的必要條件.故“”是“”的充分不必要條件.故選.8.下列命題中是假命題的是A.存在,使B.對(duì)任意,有C.△中,的充要條件是D.對(duì)任意,函數(shù)都不是偶函數(shù)【正確答案】D【分析】對(duì)于A,時(shí)成立;對(duì)于B,由于判別式小于0,故正確;對(duì)于C,利用正弦定理可知正確;對(duì)于D,當(dāng)時(shí),函數(shù)即為偶函數(shù),故可得結(jié)論.【詳解】對(duì)于A,當(dāng)時(shí)成立;對(duì)于B,令,對(duì)于函數(shù),判別式,即恒成立,故正確;對(duì)于C,由大邊對(duì)大角定理可得,由正弦定理可知正確,中,的充要條件是,故正確;對(duì)于D,當(dāng)時(shí),函數(shù)即為偶函數(shù),故錯(cuò)誤;故選:D.9.已知函數(shù),則A.f(x)的最小正周期為π B.f(x)為偶函數(shù)C.f(x)的圖象關(guān)于對(duì)稱 D.為奇函數(shù)【正確答案】C【詳解】對(duì)于函數(shù),它的最小正周期為=4π,故A選項(xiàng)錯(cuò)誤;函數(shù)f(x)不滿足f(–x)=f(x),故f(x)不是偶函數(shù),故B選項(xiàng)錯(cuò)誤;令x=,可得f(x)=sin0=0,故f(x)的圖象關(guān)于對(duì)稱,C正確;由于f(x–)=sin(x–)=–sin(x)=–cos(x)為偶函數(shù),故D選項(xiàng)錯(cuò)誤,故選C.10.已知,則函數(shù)的值域是()A. B. C. D.【正確答案】C【分析】根據(jù)正切函數(shù)的單調(diào)性確定,再根據(jù)復(fù)合函數(shù)的單調(diào)性即可求出的值域,即得答案.詳解】令,則,因?yàn)樵谏蠁握{(diào)遞增,且,所以,又在上單調(diào)遞減,且,所以,即的值域是.故選:C.11.已知函數(shù),若,則的取值范圍是()A. B. C. D.【正確答案】A【分析】由冪函數(shù)的性質(zhì)可得函數(shù)f′x在R上單調(diào)遞增且,利用導(dǎo)數(shù)求出的最小值可得,解一元二次不等式即可.【詳解】,又函數(shù)在R上單調(diào)遞增,所以函數(shù)f′x在R上單調(diào)遞增,且所以當(dāng)時(shí),f′x<0,當(dāng)x∈1,+∞時(shí),所以有最小值,且,所以,解得.故選:A12.已知直線是函數(shù)的一條對(duì)稱軸,則的一個(gè)單調(diào)遞減區(qū)間是A. B. C. D.【正確答案】B【分析】利用周期公式計(jì)算出周期,根據(jù)對(duì)稱軸對(duì)應(yīng)的是最值,然后分析單調(diào)減區(qū)間.【詳解】因?yàn)椋羧〉阶畲笾?,則,即,此時(shí)處最接近的單調(diào)減區(qū)間是:即,故B符合;若取到最小值,則,即,此時(shí)處最接近的單調(diào)減區(qū)間是:即,此時(shí)無符合答案;故選B.對(duì)于正弦型函數(shù),對(duì)稱軸對(duì)應(yīng)的是函數(shù)的最值,這一點(diǎn)值得注意.13.設(shè)函數(shù),則使得成立的的取值范圍是()A. B. C. D.【正確答案】A【分析】由奇偶函數(shù)的定義判斷函數(shù)為偶函數(shù),由函數(shù)單調(diào)性的判定得到函數(shù)的單調(diào)區(qū)間,由對(duì)稱函數(shù)的函數(shù)大致圖像得出自變量的不等關(guān)系,從而解出取值范圍.【詳解】的定義域?yàn)?,∵,∴為偶函?shù),當(dāng)時(shí),,∵,∴在上單調(diào)遞增,∴在上單調(diào)遞減,∴當(dāng)時(shí),,∴.故選:A.二、填空題(每個(gè)4分)14.函數(shù)的定義域?yàn)開_____【正確答案】【分析】根據(jù)對(duì)數(shù)的真數(shù)為正和二次根號(hào)下非負(fù)可求定義域.【詳解】由題設(shè)有,故,故函數(shù)的定義域?yàn)?,故答案?15.設(shè)函數(shù),若是函數(shù)的一個(gè)零點(diǎn),則實(shí)數(shù)______.【正確答案】【分析】根據(jù)導(dǎo)數(shù)的運(yùn)算法則,求得,結(jié)合,即可求解.【詳解】由函數(shù),可得,因?yàn)槭呛瘮?shù)的一個(gè)零點(diǎn),所以,解得.故答案為.16.冪函數(shù)在上是減函數(shù),則的值為______.【正確答案】【分析】由冪函數(shù)及其單調(diào)性即可求解.【詳解】由題意可得,解得:,所以.故17.在中三個(gè)內(nèi)角分別A,B,C且,,則角________【正確答案】##【分析】根據(jù)正切和角公式得到,由誘導(dǎo)公式得到,故,求出答案.【詳解】,又,故,所以,又,所以.故18.已知函數(shù),滿足對(duì)任意的實(shí)數(shù)且,都有,則實(shí)數(shù)a的取值范圍是______.【正確答案】【分析】利用已知條件判斷函數(shù)的單調(diào)性,根據(jù)分段函數(shù)的單調(diào)性可得關(guān)于的不等式組,解之即可.【詳解】對(duì)任意的實(shí)數(shù),都有,即異號(hào),故是上的減函數(shù);可得:,解得.故19.已知是定義在上的增函數(shù),且,則的取值范圍是______.【正確答案】【分析】根據(jù)單調(diào)性概念和函數(shù)的定義域得到滿足的條件,從而得到結(jié)果.【詳解】由題意可得,,解得.所以的取值范圍是.故答案為.20.已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),,則當(dāng)時(shí),__________.【正確答案】【分析】根據(jù)函數(shù)的奇偶性與三角函數(shù)的奇偶性求解即可.【詳解】因?yàn)楫?dāng)時(shí),,所以當(dāng)時(shí),則,所以,又函數(shù)是定義在上的偶函數(shù),所以.故答案為.21.函數(shù)的單調(diào)遞增區(qū)間是________.【正確答案】【分析】根據(jù)題意,利用二次函數(shù)的圖象與性質(zhì),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,以及對(duì)數(shù)函數(shù)的圖象與性質(zhì),函數(shù)為減函數(shù),結(jié)合復(fù)合函數(shù)的單調(diào)性的判定方法,即可求解.【詳解】令,由,解得,又的圖象的對(duì)稱軸為,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,又,則函數(shù)減函數(shù),所以由復(fù)合函數(shù)單調(diào)性知,的單調(diào)遞增區(qū)間是.故答案為.22.設(shè),,,若,,則的最大值為__________.【正確答案】3【分析】由已知可解得,.根據(jù)換底公式可得,.根據(jù)基本不等式得出,然后根據(jù)對(duì)數(shù)運(yùn)算性質(zhì)即可得出答案.【詳解】因,所以,.又,,所以,.因?yàn)?,,根?jù)基本不等式有,當(dāng)且僅當(dāng),即,時(shí)等號(hào)成立,所以.則,所以的最大值為.故答案為.23.已知,若互不相等,且,則的范圍是_______.【正確答案】【分析】根據(jù)函數(shù)的單調(diào)性得出的關(guān)系及范圍,然后利用對(duì)勾函數(shù)的性質(zhì)得出結(jié)論.【詳解】函數(shù),上單調(diào)遞減,在上單調(diào)遞增,,,畫出的圖象,如圖,令,由,得,,,由,得,即,由,得,于是,由對(duì)勾函數(shù)性質(zhì)知,在上遞增,則,所以的范圍是.故三、解答題24.在中,角,,的對(duì)邊分別為,,,.(1)求;(2)若的面積為,周長(zhǎng)為8,求.【正確答案】(1)(2)【分析】(1)由正弦定理角化邊可得,由余弦定理即可求出角;(2)根據(jù)三角形面積公式可得,利用余弦定理結(jié)合完全平方公式可得,即可求.【小問1詳解】因?yàn)椋烧叶ɡ砜傻茫核?,整理得,所以,因?yàn)?,所?【小問2詳解】因?yàn)榈拿娣e為,所以由(1)可知,,解得,所以又因?yàn)?,所以,解?25.設(shè)函數(shù)在處取得極值.(1)求的解析式;(2)當(dāng)時(shí),求函數(shù)的最值.【正確答案】(1);(2)最大值為3,最小值為.【分析】(1)根據(jù)函數(shù)極值有,列方程求參數(shù),注意驗(yàn)證;(2)利用導(dǎo)數(shù)確定的區(qū)間單調(diào)性,進(jìn)而求最值.【小問1詳解】由題設(shè),且,,所以,故,此時(shí),故在上,在上,所以fx在上單調(diào)遞增,在上單調(diào)遞減,所以在處取得極值,滿足題設(shè),綜上,.【小問2詳解】由(1)知:在上單調(diào)遞增,在上單調(diào)遞減,所以,在區(qū)間中,在上遞增,在上遞減,由,,,,綜上,函數(shù)的最大值為3,最小值為.26.如圖,平面,,,,,點(diǎn)E,F(xiàn),M分別為AP,CD,BQ的中點(diǎn).(1)求證:平面CPM;(2)求平面QPM與直線PC所成角的余弦值;(3)若N為線段CQ上的點(diǎn),直線DN與平面QPM所成的角為,求N到平面CPM的距離.【正確答案】(1)證明見解析;(2)答案見解析;(3).【分析】(1)連接EM,可證四邊形MEFC為平行四邊形,再由線面平行的判定定理即可證得;(2)建立合適的空間直角坐標(biāo)系,應(yīng)用向量法求線面角余弦值即可;(3)設(shè)且,應(yīng)用空間向量法及直線DN與平面QPM所成的角為,列方程求參數(shù),再應(yīng)用空間向量法求出點(diǎn)面距即可.【小問1詳解】連接EM,因?yàn)?,,所以,又,所以四邊形PQBA為平行四邊形,又點(diǎn)E,M分別為AP,BQ中點(diǎn),則且,因?yàn)椋?,所以且,又點(diǎn)F為CD的中點(diǎn),所以且,所以四邊形MEFC為平行四邊形,所以,又平面CPM,平面CPM,所以平面CPM.【小問2詳解】因?yàn)槠矫?,平面,所以,,又,以點(diǎn)為原點(diǎn),分別以DA,DC,DP為軸,軸,軸建立空間直角坐標(biāo)系(如圖).因?yàn)?,所以,,,,,,則,,,設(shè)平面的法向量為,則,取,則.設(shè)平面與直線所成角,則,所以與直線所成角的正弦值為.【小問3詳解】設(shè)且,則,因?yàn)橹本€與平面所成的角為,所以,所以,解得(舍去),所以,因?yàn)椋?,設(shè)平面的法向量為,則,取,則.則到平面的距離為.所以到平面的距離為.27.已知函數(shù).(1)當(dāng)時(shí),求函數(shù)在處切線方程;(2)求函數(shù)的單調(diào)區(qū)間;(3)若,不等式在上存在實(shí)數(shù)解,求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《標(biāo)準(zhǔn)化與標(biāo)準(zhǔn)編寫》課件
- 人教版八年級(jí)生物下冊(cè)第一節(jié)植物的生殖教學(xué)課件
- 七年級(jí)寫作專題作文如何選材課件
- 單位管理制度匯編大合集【職員管理】
- 單位管理制度合并匯編【人力資源管理】
- 單位管理制度呈現(xiàn)匯編員工管理十篇
- 《電腦常識(shí)賽宣講》課件
- 《容積和容積單位》課件
- 《產(chǎn)品開發(fā)管理V》課件
- 三角形的初步認(rèn)識(shí)課件
- JJF(京) 3029-2023 醫(yī)用(硬性)內(nèi)窺鏡校準(zhǔn)規(guī)范
- 人教版八年級(jí)英語上冊(cè)期末專項(xiàng)復(fù)習(xí)-完形填空和閱讀理解(含答案)
- 住院醫(yī)師規(guī)范化培訓(xùn)婦產(chǎn)科出科考試帶答案
- 期末達(dá)標(biāo)測(cè)試卷(二)(試卷)-2024-2025學(xué)年冀教版數(shù)學(xué)四年級(jí)上冊(cè)
- 2024新版有限空間作業(yè)安全大培訓(xùn)
- GB/T 44413-2024城市軌道交通分類
- GB 19041-2024光氣及光氣化產(chǎn)品生產(chǎn)安全規(guī)范
- 2024至2030年中國(guó)土地整治行業(yè)市場(chǎng)專項(xiàng)調(diào)研及競(jìng)爭(zhēng)戰(zhàn)略分析報(bào)告
- 數(shù)據(jù)交易場(chǎng)所發(fā)展指數(shù)研究報(bào)告(2024年)
- NBT 31021-2012風(fēng)力發(fā)電企業(yè)科技文件規(guī)檔規(guī)范
- 嬰幼兒托育機(jī)構(gòu)安全防護(hù)-整體環(huán)境布局安全隱患識(shí)別與排除策略
評(píng)論
0/150
提交評(píng)論