2025屆四川省廣安、眉山、內(nèi)江、遂寧高三下學(xué)期一模考試數(shù)學(xué)試題含解析_第1頁
2025屆四川省廣安、眉山、內(nèi)江、遂寧高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第2頁
2025屆四川省廣安、眉山、內(nèi)江、遂寧高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第3頁
2025屆四川省廣安、眉山、內(nèi)江、遂寧高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第4頁
2025屆四川省廣安、眉山、內(nèi)江、遂寧高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆四川省廣安、眉山、內(nèi)江、遂寧高三下學(xué)期一??荚嚁?shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.2.已知半徑為2的球內(nèi)有一個內(nèi)接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.3.已知中,,則()A.1 B. C. D.4.如圖所示,直三棱柱的高為4,底面邊長分別是5,12,13,當球與上底面三條棱都相切時球心到下底面距離為8,則球的體積為()A.1605π3 B.6425.設(shè)復(fù)數(shù),則=()A.1 B. C. D.6.已知函數(shù),則不等式的解集是()A. B. C. D.7.復(fù)數(shù)滿足(為虛數(shù)單位),則的值是()A. B. C. D.8.記個兩兩無交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設(shè)函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間9.關(guān)于函數(shù)在區(qū)間的單調(diào)性,下列敘述正確的是()A.單調(diào)遞增 B.單調(diào)遞減 C.先遞減后遞增 D.先遞增后遞減10.如圖所示,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋(球體)離蛋巢底面的最短距離為()A. B.C. D.11.若(1+2ai)i=1-bi,其中a,b∈R,則|a+bi|=().A. B. C. D.512.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻)若從八卦中任取兩卦,這兩卦的六個爻中恰有兩個陽爻的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某高中共有1800人,其中高一、高二、高三年級的人數(shù)依次成等差數(shù)列,現(xiàn)用分層抽樣的方法從中抽取60人,那么高二年級被抽取的人數(shù)為________.14.在△ABC中,a=3,,B=2A,則cosA=_____.15.如圖,在矩形中,,是的中點,將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為__________.16.如果橢圓的對稱軸為坐標軸,短軸的一個端點與兩焦點組成一正三角形,焦點在x軸上,且=,那么橢圓的方程是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在矩形中,,,點分別是線段的中點,分別將沿折起,沿折起,使得重合于點,連結(jié).(Ⅰ)求證:平面平面;(Ⅱ)求直線與平面所成角的正弦值.18.(12分)已知橢圓過點且橢圓的左、右焦點與短軸的端點構(gòu)成的四邊形的面積為.(1)求橢圓C的標準方程:(2)設(shè)A是橢圓的左頂點,過右焦點F的直線,與橢圓交于P,Q,直線AP,AQ與直線交于M,N,線段MN的中點為E.①求證:;②記,,的面積分別為、、,求證:為定值.19.(12分)已知函數(shù).(Ⅰ)當時,求不等式的解集;(Ⅱ)若存在滿足不等式,求實數(shù)的取值范圍.20.(12分)在銳角中,,,分別是角,,所對的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.21.(12分)已知數(shù)列,,數(shù)列滿足,n.(1)若,,求數(shù)列的前2n項和;(2)若數(shù)列為等差數(shù)列,且對任意n,恒成立.①當數(shù)列為等差數(shù)列時,求證:數(shù)列,的公差相等;②數(shù)列能否為等比數(shù)列?若能,請寫出所有滿足條件的數(shù)列;若不能,請說明理由.22.(10分)(1)求曲線和曲線圍成圖形的面積;(2)化簡求值:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

集合.為自然數(shù)集,由此能求出結(jié)果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯誤.故選:D.【點睛】本題考查命題真假的判斷、元素與集合的關(guān)系、集合與集合的關(guān)系等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.2、D【解析】

分別求出球和圓柱的體積,然后可得比值.【詳解】設(shè)圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.【點睛】本題主要考查幾何體的體積求解,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).3、C【解析】

以為基底,將用基底表示,根據(jù)向量數(shù)量積的運算律,即可求解.【詳解】,,.故選:C.【點睛】本題考查向量的線性運算以及向量的基本定理,考查向量數(shù)量積運算,屬于中檔題.4、A【解析】

設(shè)球心為O,三棱柱的上底面ΔA1B1C1的內(nèi)切圓的圓心為O1,該圓與邊B【詳解】如圖,設(shè)三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設(shè)球心為O,則由球的幾何知識得ΔOO1M所以O(shè)M=2即球O的半徑為25所以球O的體積為43故選A.【點睛】本題考查與球有關(guān)的組合體的問題,解答本題的關(guān)鍵有兩個:(1)構(gòu)造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內(nèi)求出球的半徑,這是解決與球有關(guān)的問題時常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內(nèi)切圓的半徑r=a+b-c5、A【解析】

根據(jù)復(fù)數(shù)的除法運算,代入化簡即可求解.【詳解】復(fù)數(shù),則故選:A.【點睛】本題考查了復(fù)數(shù)的除法運算與化簡求值,屬于基礎(chǔ)題.6、B【解析】

由導(dǎo)數(shù)確定函數(shù)的單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【詳解】函數(shù),可得,時,,單調(diào)遞增,∵,故不等式的解集等價于不等式的解集..∴.故選:B.【點睛】本題主要考查了利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性,根據(jù)單調(diào)性解不等式,屬于中檔題.7、C【解析】

直接利用復(fù)數(shù)的除法的運算法則化簡求解即可.【詳解】由得:本題正確選項:【點睛】本題考查復(fù)數(shù)的除法的運算法則的應(yīng)用,考查計算能力.8、D【解析】

可判斷函數(shù)為奇函數(shù),先討論當且時的導(dǎo)數(shù)情況,再畫出函數(shù)大致圖形,將所求區(qū)間端點值分別看作對應(yīng)常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當且時,.令得.可得和的變化情況如下表:令,則原不等式變?yōu)椋蓤D像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點睛】本題考查由函數(shù)的奇偶性,單調(diào)性求解對應(yīng)自變量范圍,導(dǎo)數(shù)法研究函數(shù)增減性,數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于難題9、C【解析】

先用誘導(dǎo)公式得,再根據(jù)函數(shù)圖像平移的方法求解即可.【詳解】函數(shù)的圖象可由向左平移個單位得到,如圖所示,在上先遞減后遞增.故選:C【點睛】本題考查三角函數(shù)的平移與單調(diào)性的求解.屬于基礎(chǔ)題.10、D【解析】因為蛋巢的底面是邊長為的正方形,所以過四個頂點截雞蛋所得的截面圓的直徑為,又因為雞蛋的體積為,所以球的半徑為,所以球心到截面的距離,而截面到球體最低點距離為,而蛋巢的高度為,故球體到蛋巢底面的最短距離為.點睛:本題主要考查折疊問題,考查球體有關(guān)的知識.在解答過程中,如果遇到球體或者圓錐等幾何體的內(nèi)接或外接幾何體的問題時,可以采用軸截面的方法來處理.也就是畫出題目通過球心和最低點的截面,然后利用弦長和勾股定理來解決.球的表面積公式和體積公式是需要熟記的.11、C【解析】試題分析:由已知,-2a+i=1-bi,根據(jù)復(fù)數(shù)相等的充要條件,有a=-,b=-1所以|a+bi|=,選C考點:復(fù)數(shù)的代數(shù)運算,復(fù)數(shù)相等的充要條件,復(fù)數(shù)的模12、C【解析】

分類討論,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦;從僅有兩個陽爻的有巽、離、兌三卦中取一個,再取沒有陽爻的坤卦,計算滿足條件的種數(shù),利用古典概型即得解.【詳解】由圖可知,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦滿足條件,其種數(shù)是;僅有兩個陽爻的有巽、離、兌三卦,沒有陽爻的是坤卦,此時取兩卦滿足條件的種數(shù)是,于是所求的概率.故選:C【點睛】本題考查了古典概型的應(yīng)用,考查了學(xué)生綜合分析,分類討論,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由三個年級人數(shù)成等差數(shù)列和總?cè)藬?shù)可求得高二年級共有人,根據(jù)抽樣比可求得結(jié)果.【詳解】設(shè)高一、高二、高三人數(shù)分別為,則且,解得:,用分層抽樣的方法抽取人,那么高二年級被抽取的人數(shù)為人.故答案為:.【點睛】本題考查分層抽樣問題的求解,涉及到等差數(shù)列的相關(guān)知識,屬于基礎(chǔ)題.14、【解析】

由已知利用正弦定理,二倍角的正弦函數(shù)公式即可計算求值得解.【詳解】解:∵a=3,,B=2A,∴由正弦定理可得:,∴cosA.故答案為.【點睛】本題主要考查了正弦定理,二倍角的正弦函數(shù)公式在解三角形中的應(yīng)用,屬于基礎(chǔ)題.15、【解析】

根據(jù)題意,畫出空間幾何體,設(shè)的中點分別為,并連接,利用面面垂直的性質(zhì)及所給線段關(guān)系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【詳解】由題可得,,均為等腰直角三角形,如圖所示,設(shè)的中點分別為,連接,則,.因為平面平面,平面平面,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.【點睛】本題考查了空間幾何體的綜合應(yīng)用,折疊后空間幾何體的線面位置關(guān)系應(yīng)用,空間幾何體外接球的性質(zhì)及體積求法,屬于中檔題.16、【解析】

由題意可設(shè)橢圓方程為:∵短軸的一個端點與兩焦點組成一正三角形,焦點在軸上∴又,∴,∴橢圓的方程為,故答案為.考點:橢圓的標準方程,解三角形以及解方程組的相關(guān)知識.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)詳見解析;(Ⅱ).【解析】

(Ⅰ)根據(jù),,可得平面,故而平面平面.(Ⅱ)過作于,則可證平面,故為所求角,在中利用余弦定理計算,再計算.【詳解】解:(Ⅰ)因為,,,平面,平面所以平面,又平面,所以平面平面;(Ⅱ)過作于,則由平面,且平面知,所以平面,從而是直線與平面所成角.因為,,,所以,從而.【點睛】本題考查了面面垂直的判定,考查直線與平面所成角的計算,屬于中檔題.18、(1);(2)①證明見解析;②證明見解析【解析】

(1)解方程即可;(2)①設(shè)直線,,,將點的坐標用表示,證明即可;②分別用表示,,的面積即可.【詳解】(1)解之得:的標準方程為:(2)①,,設(shè)直線代入橢圓方程:設(shè),,,直線,直線,,,,,.②,所以.【點睛】本題考查了直接法求橢圓的標準方程、直線與橢圓位置關(guān)系中的定值問題,在處理此類問題一般要涉及根與系數(shù)的關(guān)系,本題思路簡單,但計算量比較大,是一道有一定難度的題.19、(Ⅰ)或.(Ⅱ)【解析】

(Ⅰ)分類討論解絕對值不等式得到答案.(Ⅱ)討論和兩種情況,得到函數(shù)單調(diào)性,得到只需,代入計算得到答案.【詳解】(Ⅰ)當時,不等式為,變形為或或,解集為或.(Ⅱ)當時,,由此可知在單調(diào)遞減,在單調(diào)遞增,當時,同樣得到在單調(diào)遞減,在單調(diào)遞增,所以,存在滿足不等式,只需,即,解得.【點睛】本題考查了解絕對值不等式,不等式存在性問題,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.20、A【解析】

由正弦定理化簡得,解得,進而得到,利用正切的倍角公式求得,根據(jù)三角形的面積公式,求得,進而化簡,即可求解.【詳解】由題意,在銳角中,滿足,由正弦定理可得,即,可得,所以,即,所以,所以,則,所以,可得,又由的面積,所以,則.故選:A.【點睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,以及三角形的面積公式和正切的倍角公式的綜合應(yīng)用,著重考查了推理與運算能力,屬于中檔試題.21、(1)(2)①見解析②數(shù)列不能為等比數(shù)列,見解析【解析】

(1)根據(jù)數(shù)列通項公式的特點,奇數(shù)項為等差數(shù)列,偶數(shù)項為等比數(shù)列,選用分組求和的方法進行求解;(2)①設(shè)數(shù)列的公差為,數(shù)列的公差為,當n為奇數(shù)時,得出;當n為偶數(shù)時,得出,從而可證數(shù)列,的公差相等;②利用反證法,先假設(shè)可以為等比數(shù)列,結(jié)合題意得出矛盾,進而得出數(shù)列不能為等比數(shù)列.【詳解】(1)因為,,所以,且,由題意可知,數(shù)列是以1為首項,2為公差的等差數(shù)列,數(shù)列是首項和公比均為4的等比數(shù)列,所以;(2)①證明:設(shè)數(shù)列的公差為,數(shù)列的公差為,當n為奇數(shù)時,,若,則當時,,即,與題意不符,所以,當n為偶數(shù)時,,,若,則當時,,即,與題意不符,所以,綜上,,原命題得證;②假設(shè)可以為等比數(shù)列,設(shè)公比為q,因為,所以,所以,,因為當時,,所以當n為偶數(shù),且時,,即當n為偶數(shù),且時,不成立,與題意矛

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論