2025屆河南省洛陽市重點中學高考數(shù)學四模試卷含解析_第1頁
2025屆河南省洛陽市重點中學高考數(shù)學四模試卷含解析_第2頁
2025屆河南省洛陽市重點中學高考數(shù)學四模試卷含解析_第3頁
2025屆河南省洛陽市重點中學高考數(shù)學四模試卷含解析_第4頁
2025屆河南省洛陽市重點中學高考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆河南省洛陽市重點中學高考數(shù)學四模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若是定義域為的奇函數(shù),且,則A.的值域為 B.為周期函數(shù),且6為其一個周期C.的圖像關于對稱 D.函數(shù)的零點有無窮多個2.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實數(shù)的取值范圍是A. B. C. D.3.如圖1,《九章算術》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現(xiàn)被風折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.4.如圖,四邊形為平行四邊形,為中點,為的三等分點(靠近)若,則的值為()A. B. C. D.5.設雙曲線(,)的一條漸近線與拋物線有且只有一個公共點,且橢圓的焦距為2,則雙曲線的標準方程為()A. B. C. D.6.在平面直角坐標系中,將點繞原點逆時針旋轉到點,設直線與軸正半軸所成的最小正角為,則等于()A. B. C. D.7.根據(jù)黨中央關于“精準”脫貧的要求,我市某農(nóng)業(yè)經(jīng)濟部門派四位專家對三個縣區(qū)進行調(diào)研,每個縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()A. B. C. D.8.已知定點,,是圓上的任意一點,點關于點的對稱點為,線段的垂直平分線與直線相交于點,則點的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓9.若,滿足約束條件,則的最大值是()A. B. C.13 D.10.已知是定義是上的奇函數(shù),滿足,當時,,則函數(shù)在區(qū)間上的零點個數(shù)是()A.3 B.5 C.7 D.911.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.12.已知函數(shù)是奇函數(shù),且,若對,恒成立,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設實數(shù)x,y滿足,則點表示的區(qū)域面積為______.14.在的展開式中,的系數(shù)為______用數(shù)字作答15.如圖,在△ABC中,AB=4,D是AB的中點,E在邊AC上,AE=2EC,CD與BE交于點O,若OB=OC,則△ABC面積的最大值為_______.16.隨著國力的發(fā)展,人們的生活水平越來越好,我國的人均身高較新中國成立初期有大幅提高.為了掌握學生的體質與健康現(xiàn)狀,合理制定學校體育衛(wèi)生工作發(fā)展規(guī)劃,某市進行了一次全市高中男生身高統(tǒng)計調(diào)查,數(shù)據(jù)顯示全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,那么該市身高高于的高中男生人數(shù)大約為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,平面平面,,.點,,分別為線段,,的中點,點是線段的中點.(1)求證:平面.(2)判斷與平面的位置關系,并證明.18.(12分)已知橢圓的左右焦點分別是,點在橢圓上,滿足(1)求橢圓的標準方程;(2)直線過點,且與橢圓只有一個公共點,直線與的傾斜角互補,且與橢圓交于異于點的兩點,與直線交于點(介于兩點之間),是否存在直線,使得直線,,的斜率按某種排序能構成等比數(shù)列?若能,求出的方程,若不能,請說理由.19.(12分)已知.(1)解不等式;(2)若均為正數(shù),且,求的最小值.20.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.21.(12分)已知拋物線C:x24py(p為大于2的質數(shù))的焦點為F,過點F且斜率為k(k0)的直線交C于A,B兩點,線段AB的垂直平分線交y軸于點E,拋物線C在點A,B處的切線相交于點G.記四邊形AEBG的面積為S.(1)求點G的軌跡方程;(2)當點G的橫坐標為整數(shù)時,S是否為整數(shù)?若是,請求出所有滿足條件的S的值;若不是,請說明理由.22.(10分)定義:若數(shù)列滿足所有的項均由構成且其中有個,有個,則稱為“﹣數(shù)列”.(1)為“﹣數(shù)列”中的任意三項,則使得的取法有多少種?(2)為“﹣數(shù)列”中的任意三項,則存在多少正整數(shù)對使得且的概率為.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

運用函數(shù)的奇偶性定義,周期性定義,根據(jù)表達式判斷即可.【詳解】是定義域為的奇函數(shù),則,,又,,即是以4為周期的函數(shù),,所以函數(shù)的零點有無窮多個;因為,,令,則,即,所以的圖象關于對稱,由題意無法求出的值域,所以本題答案為D.【點睛】本題綜合考查了函數(shù)的性質,主要是抽象函數(shù)的性質,運用數(shù)學式子判斷得出結論是關鍵.2、D【解析】

由題意得,表示不等式的解集中整數(shù)解之和為6.當時,數(shù)形結合(如圖)得的解集中的整數(shù)解有無數(shù)多個,解集中的整數(shù)解之和一定大于6.當時,,數(shù)形結合(如圖),由解得.在內(nèi)有3個整數(shù)解,為1,2,3,滿足,所以符合題意.當時,作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數(shù)的取值范圍是.故選D.3、B【解析】如圖,已知,,

∴,解得

,∴,解得

.∴折斷后的竹干高為4.55尺故選B.4、D【解析】

使用不同方法用表示出,結合平面向量的基本定理列出方程解出.【詳解】解:,又解得,所以故選:D【點睛】本題考查了平面向量的基本定理及其意義,屬于基礎題.5、B【解析】

設雙曲線的漸近線方程為,與拋物線方程聯(lián)立,利用,求出的值,得到的值,求出關系,進而判斷大小,結合橢圓的焦距為2,即可求出結論.【詳解】設雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標準方程為.故選:B.【點睛】本題考查橢圓和雙曲線的標準方程、雙曲線的簡單幾何性質,要注意雙曲線焦點位置,屬于中檔題.6、A【解析】

設直線直線與軸正半軸所成的最小正角為,由任意角的三角函數(shù)的定義可以求得的值,依題有,則,利用誘導公式即可得到答案.【詳解】如圖,設直線直線與軸正半軸所成的最小正角為因為點在角的終邊上,所以依題有,則,所以,故選:A【點睛】本題考查三角函數(shù)的定義及誘導公式,屬于基礎題.7、A【解析】

每個縣區(qū)至少派一位專家,基本事件總數(shù),甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù),由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對三個縣區(qū)進行調(diào)研,每個縣區(qū)至少派一位專家基本事件總數(shù):甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù):甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項:【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,是基礎題.8、B【解析】

根據(jù)線段垂直平分線的性質,結合三角形中位線定理、圓錐曲線和圓的定義進行判斷即可.【詳解】因為線段的垂直平分線與直線相交于點,如下圖所示:所以有,而是中點,連接,故,因此當在如下圖所示位置時有,所以有,而是中點,連接,故,因此,綜上所述:有,所以點的軌跡是雙曲線.故選:B【點睛】本題考查了雙曲線的定義,考查了數(shù)學運算能力和推理論證能力,考查了分類討論思想.9、C【解析】

由已知畫出可行域,利用目標函數(shù)的幾何意義求最大值.【詳解】解:表示可行域內(nèi)的點到坐標原點的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點到坐標原點的距離最大,即.故選:.【點睛】本題考查線性規(guī)劃問題,考查數(shù)形結合的數(shù)學思想以及運算求解能力,屬于基礎題.10、D【解析】

根據(jù)是定義是上的奇函數(shù),滿足,可得函數(shù)的周期為3,再由奇函數(shù)的性質結合已知可得,利用周期性可得函數(shù)在區(qū)間上的零點個數(shù).【詳解】∵是定義是上的奇函數(shù),滿足,,可得,

函數(shù)的周期為3,

∵當時,,

令,則,解得或1,

又∵函數(shù)是定義域為的奇函數(shù),

∴在區(qū)間上,有.

由,取,得,得,

∴.

又∵函數(shù)是周期為3的周期函數(shù),

∴方程=0在區(qū)間上的解有共9個,

故選D.【點睛】本題考查根的存在性及根的個數(shù)判斷,考查抽象函數(shù)周期性的應用,考查邏輯思維能力與推理論證能力,屬于中檔題.11、B【解析】

還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.12、A【解析】

先根據(jù)函數(shù)奇偶性求得,利用導數(shù)判斷函數(shù)單調(diào)性,利用函數(shù)單調(diào)性求解不等式即可.【詳解】因為函數(shù)是奇函數(shù),所以函數(shù)是偶函數(shù).,即,又,所以,.函數(shù)的定義域為,所以,則函數(shù)在上為單調(diào)遞增函數(shù).又在上,,所以為偶函數(shù),且在上單調(diào)遞增.由,可得,對恒成立,則,對恒成立,,得,所以的取值范圍是.故選:A.【點睛】本題考查利用函數(shù)單調(diào)性求解不等式,根據(jù)方程組法求函數(shù)解析式,利用導數(shù)判斷函數(shù)單調(diào)性,屬壓軸題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先畫出滿足條件的平面區(qū)域,求出交點坐標,利用定積分即可求解.【詳解】畫出實數(shù)x,y滿足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:【點睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎題.14、1【解析】

利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數(shù).【詳解】二項展開式的通項為令得的系數(shù)為故答案為1.【點睛】利用二項展開式的通項公式是解決二項展開式的特定項問題的工具.15、【解析】

先根據(jù)點共線得到,從而得到O的軌跡為阿氏圓,結合三角形和三角形的面積關系可求.【詳解】設B,O,E共線,則,解得,從而O為CD中點,故.在△BOD中,BD=2,,易知O的軌跡為阿氏圓,其半徑,故.故答案為:.【點睛】本題主要考查三角形的面積問題,把所求面積進行轉化是求解的關鍵,側重考查數(shù)學運算的核心素養(yǎng).16、3000【解析】

根據(jù)正態(tài)曲線的對稱性求出,進而可求出身高高于的高中男生人數(shù).【詳解】解:全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,則,該市身高高于的高中男生人數(shù)大約為.故答案為:.【點睛】本題考查正態(tài)曲線的對稱性的應用,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)平面.見解析【解析】

(1)要證平面,只需證明,,即可求得答案;(2)連接交于點,連接,根據(jù)已知條件求證,即可判斷與平面的位置關系,進而求得答案.【詳解】(1),為邊的中點,,平面平面,平面平面,平面,平面,,在內(nèi),,為所在邊的中點,,又,,平面.(2)判斷可知,平面,證明如下:連接交于點,連接.、、分別為邊、、的中點,.又是的重心,,,平面,平面,平面.【點睛】本題主要考查了求證線面垂直和線面平行,解題關鍵是掌握線面垂直判定定理和線面平行判斷定理,考查了分析能力和空間想象能力,屬于中檔題.18、(1);(2)不能,理由見解析【解析】

(1)設,則,由此即可求出橢圓方程;(2)設直線的方程為,聯(lián)立直線與橢圓的方程可求得,則直線斜率為,設其方程為,聯(lián)立直線與橢圓方程,結合韋達定理可得關于對稱,可求得,假設存在直線滿足題意,設,可得,由此可得答案.【詳解】解:(1)設,則,,所以橢圓方程為;(2)設直線的方程為,與聯(lián)立得,∴,因為兩直線的傾斜角互補,所以直線斜率為,設直線的方程為,聯(lián)立整理得,,所以關于對稱,由正弦定理得,因為,所以,由上得,假設存在直線滿足題意,設,按某種排列成等比數(shù)列,設公比為,則,所以,則此時直線與平行或重合,與題意不符,所以不存在滿足題意的直線.【點睛】本題主要考查直線與橢圓的位置關系,考查計算能力與推理能力,屬于難題.19、(1);(2)【解析】

(1)利用零點分段討論法可求不等式的解.(2)利用柯西不等式可求的最小值.【詳解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即(當且僅當時取“=”).所以的最小值為.【點睛】本題考查絕對值不等式的解法以及利用柯西不等式求最值.解絕對值不等式的基本方法有零點分段討論法、圖象法、平方法等,利用零點分段討論法時注意分類點的合理選擇,利用平方去掉絕對值符號時注意代數(shù)式的正負,而利用圖象法求解時注意圖象的正確刻畫.利用柯西不等式求最值時注意把原代數(shù)式配成平方和的乘積形式,本題屬于中檔題.20、.【解析】試題分析:,所以.試題解析:B.因為,所以.21、(1)(2)當G點橫坐標為整數(shù)時,S不是整數(shù).【解析】

(1)先求解導數(shù),得出切線方程,聯(lián)立方程得出交點G的軌跡方程;(2)先求解弦長,再分別求解點到直線的距離,表示出四邊形的面積,結合點G的橫坐標為整數(shù)進行判斷.【詳解】(1)設,則,拋物線C的方程可化為,則,所以曲線C在點A處的切線方程為,在點B處的切線方程為,因為兩切線均過點G,所以,所以A,B兩點均在直線上,所以直線AB的方程為,又因為直線AB過點F(0,p),所以,即G點軌跡方程為;(2)設點G(,),由(1)可知,直線AB的方程為,即,將直線AB的方程與拋物線聯(lián)立,,整理得,所以,,解得,因為直線AB的斜率,所以,且,線段AB的中點為M,所以直線EM的方程為:,所以E點坐標為(0,),直線AB的方程整理得,則G到AB的距離,則E到AB的距離,所以,設,因為p是質數(shù),且為整數(shù),所以或,當時,,是無理數(shù),不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論