![山東省德州市齊河縣一中2025屆高考數(shù)學(xué)四模試卷含解析_第1頁](http://file4.renrendoc.com/view12/M00/1A/12/wKhkGWd0LsmAERxqAAHXtINAGuA415.jpg)
![山東省德州市齊河縣一中2025屆高考數(shù)學(xué)四模試卷含解析_第2頁](http://file4.renrendoc.com/view12/M00/1A/12/wKhkGWd0LsmAERxqAAHXtINAGuA4152.jpg)
![山東省德州市齊河縣一中2025屆高考數(shù)學(xué)四模試卷含解析_第3頁](http://file4.renrendoc.com/view12/M00/1A/12/wKhkGWd0LsmAERxqAAHXtINAGuA4153.jpg)
![山東省德州市齊河縣一中2025屆高考數(shù)學(xué)四模試卷含解析_第4頁](http://file4.renrendoc.com/view12/M00/1A/12/wKhkGWd0LsmAERxqAAHXtINAGuA4154.jpg)
![山東省德州市齊河縣一中2025屆高考數(shù)學(xué)四模試卷含解析_第5頁](http://file4.renrendoc.com/view12/M00/1A/12/wKhkGWd0LsmAERxqAAHXtINAGuA4155.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省德州市齊河縣一中2025屆高考數(shù)學(xué)四模試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標(biāo)原點),則雙曲線C的離心率為A. B. C. D.2.函數(shù)的大致圖象是()A. B.C. D.3.已知等比數(shù)列滿足,,則()A. B. C. D.4.函數(shù)(且)的圖象可能為()A. B. C. D.5.我國古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了“三斜求積術(shù)”,用現(xiàn)代式子表示即為:在中,角所對的邊分別為,則的面積.根據(jù)此公式,若,且,則的面積為()A. B. C. D.6.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.27.如圖,點E是正方體ABCD-A1B1C1D1的棱DD1的中點,點F,M分別在線段AC,BD1(不包含端點)上運動,則()A.在點F的運動過程中,存在EF//BC1B.在點M的運動過程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值8.若數(shù)列滿足且,則使的的值為()A. B. C. D.9.已知是邊長為1的等邊三角形,點,分別是邊,的中點,連接并延長到點,使得,則的值為()A. B. C. D.10.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.11.已知非零向量滿足,若夾角的余弦值為,且,則實數(shù)的值為()A. B. C.或 D.12.已知正四面體的棱長為,是該正四面體外接球球心,且,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若變量,滿足約束條件則的最大值為________.14.設(shè)數(shù)列為等差數(shù)列,其前項和為,已知,,若對任意都有成立,則的值為__________.15.袋中裝有兩個紅球、三個白球,四個黃球,從中任取四個球,則其中三種顏色的球均有的概率為________.16.設(shè)為銳角,若,則的值為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)),圓的方程為,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.(1)求和的極坐標(biāo)方程;(2)過且傾斜角為的直線與交于點,與交于另一點,若,求的取值范圍.18.(12分)如圖,為等腰直角三角形,,D為AC上一點,將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.19.(12分)已知直線l的極坐標(biāo)方程為,圓C的參數(shù)方程為(為參數(shù)).(1)請分別把直線l和圓C的方程化為直角坐標(biāo)方程;(2)求直線l被圓截得的弦長.20.(12分)在平面直角坐標(biāo)系xOy中,拋物線C:,以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為().(1)求拋物線C的極坐標(biāo)方程;(2)若拋物線C與直線l交于A,B兩點,求的值.21.(12分)某地為改善旅游環(huán)境進行景點改造.如圖,將兩條平行觀光道l1和l2通過一段拋物線形狀的棧道AB連通(道路不計寬度),l1和l2所在直線的距離為0.5(百米),對岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點,拋物線的對稱軸垂直于l3,且交l3于M
),在堤岸線l3上的E,F(xiàn)兩處建造建筑物,其中E,F(xiàn)到M的距離為1
(百米),且F恰在B的正對岸(即BF⊥l3).(1)在圖②中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并求棧道AB的方程;(2)游客(視為點P)在棧道AB的何處時,觀測EF的視角(∠EPF)最大?請在(1)的坐標(biāo)系中,寫出觀測點P的坐標(biāo).22.(10分)已知二階矩陣A=abcd,矩陣A屬于特征值λ1=-1的一個特征向量為α1
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
直線的傾斜角為,易得.設(shè)雙曲線C的右焦點為E,可得中,,則,所以雙曲線C的離心率為.故選B.2、A【解析】
用排除B,C;用排除;可得正確答案.【詳解】解:當(dāng)時,,,所以,故可排除B,C;當(dāng)時,,故可排除D.故選:A.【點睛】本題考查了函數(shù)圖象,屬基礎(chǔ)題.3、B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.4、D【解析】因為,故函數(shù)是奇函數(shù),所以排除A,B;取,則,故選D.考點:1.函數(shù)的基本性質(zhì);2.函數(shù)的圖象.5、A【解析】
根據(jù),利用正弦定理邊化為角得,整理為,根據(jù),得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因為,所以,由余弦定理,所以,由的面積公式得故選:A【點睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運算求解的能力,屬于中檔題.6、B【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點,再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時,有最大值為,即,故..當(dāng),即時等號成立.故選:.【點睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.7、C【解析】
采用逐一驗證法,根據(jù)線線、線面之間的關(guān)系以及四面體的體積公式,可得結(jié)果.【詳解】A錯誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點到平面的距離,由//,平面,平面所以//平面,則點到平面的距離即點到平面的距離,所以為定值,故四面體EMAC的體積為定值錯誤由//,平面,平面所以//平面,則點到平面的距離即為點到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點睛】本題考查線面、線線之間的關(guān)系,考驗分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質(zhì)定理,中檔題.8、C【解析】因為,所以是等差數(shù)列,且公差,則,所以由題設(shè)可得,則,應(yīng)選答案C.9、D【解析】
設(shè),,作為一個基底,表示向量,,,然后再用數(shù)量積公式求解.【詳解】設(shè),,所以,,,所以.故選:D【點睛】本題主要考查平面向量的基本運算,還考查了運算求解的能力,屬于基礎(chǔ)題.10、D【解析】
依次將選項中的代入,結(jié)合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當(dāng)時,在上不單調(diào),故A不正確;當(dāng)時,在上單調(diào)遞減,故B不正確;當(dāng)時,在上不單調(diào),故C不正確;當(dāng)時,在上單調(diào)遞增,故D正確.故選:D【點睛】本題考查正弦、余弦函數(shù)的單調(diào)性,涉及到誘導(dǎo)公式的應(yīng)用,是一道容易題.11、D【解析】
根據(jù)向量垂直則數(shù)量積為零,結(jié)合以及夾角的余弦值,即可求得參數(shù)值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數(shù)量積的應(yīng)用,涉及由向量垂直求參數(shù)值,屬基礎(chǔ)題.12、A【解析】
如圖設(shè)平面,球心在上,根據(jù)正四面體的性質(zhì)可得,根據(jù)平面向量的加法的幾何意義,重心的性質(zhì),結(jié)合已知求出的值.【詳解】如圖設(shè)平面,球心在上,由正四面體的性質(zhì)可得:三角形是正三角形,,,在直角三角形中,,,,,,因為為重心,因此,則,因此,因此,則,故選A.【點睛】本題考查了正四面體的性質(zhì),考查了平面向量加法的幾何意義,考查了重心的性質(zhì),屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】
畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合,即可容易求得目標(biāo)函數(shù)的最大值.【詳解】作出不等式組所表示的平面區(qū)域,如下圖陰影部分所示.觀察可知,當(dāng)直線過點時,有最大值,.故答案為:.【點睛】本題考查二次不等式組與平面區(qū)域、線性規(guī)劃,主要考查推理論證能力以及數(shù)形結(jié)合思想,屬基礎(chǔ)題.14、【解析】
由已知條件得出關(guān)于首項和公差的方程組,解出這兩個量,計算出,利用二次函數(shù)的基本性質(zhì)求出的最大值及其對應(yīng)的值,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由,解得,.所以,當(dāng)時,取得最大值,對任意都有成立,則為數(shù)列的最大值,因此,.故答案為:.【點睛】本題考查等差數(shù)列前項和最值的計算,一般利用二次函數(shù)的基本性質(zhì)求解,考查計算能力,屬于中等題.15、【解析】
基本事件總數(shù)n126,其中三種顏色的球都有包含的基本事件個數(shù)m72,由此能求出其中三種顏色的球都有的概率.【詳解】解:袋中有2個紅球,3個白球和4個黃球,從中任取4個球,基本事件總數(shù)n126,其中三種顏色的球都有,可能是2個紅球,1個白球和1個黃球或1個紅球,2個白球和1個黃球或1個紅球,1個白球和2個黃球,所以包含的基本事件個數(shù)m72,∴其中三種顏色的球都有的概率是p.故答案為:.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.16、【解析】
∵為銳角,,∴,∴,,故.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)直接利用轉(zhuǎn)換公式,把參數(shù)方程,直角坐標(biāo)方程與極坐標(biāo)方程進行轉(zhuǎn)化;(2)利用極坐標(biāo)方程將轉(zhuǎn)化為三角函數(shù)求解即可.【詳解】(1)因為,所以的普通方程為,又,,,的極坐標(biāo)方程為,的方程即為,對應(yīng)極坐標(biāo)方程為.(2)由己知設(shè),,則,,所以,又,,當(dāng),即時,取得最小值;當(dāng),即時,取得最大值.所以,的取值范圍為.【點睛】本題主要考查了直角坐標(biāo)方程,參數(shù)方程與極坐標(biāo)方程的互化,三角函數(shù)的值域求解等知識,考查了學(xué)生的運算求解能力.18、(1)見解析;(2)【解析】
(1)由折疊過程知與平面垂直,得,再取中點,可證與平面垂直,得,從而可得線面垂直,再得線線垂直;(2)由已知得為中點,以為原點,所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標(biāo)系,由已知求出線段長,得出各點坐標(biāo),用平面的法向量計算二面角的余弦.【詳解】(1)易知與平面垂直,∴,連接,取中點,連接,由得,,∴平面,平面,∴,又,∴平面,∴;(2)由,知是中點,令,則,由,,∴,解得,故.以為原點,所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標(biāo)系,如圖,則,,,設(shè)平面的法向量為,則,取,則.又易知平面的一個法向量為,.∴二面角的余弦值為.【點睛】本題考查證明線線垂直,考查用空間向量法求二面角.證線線垂直,一般先證線面垂直,而證線面垂直又要證線線垂直,注意線線垂直、線面垂直及面面垂直的轉(zhuǎn)化.求空間角,常用方法就是建立空間直角坐標(biāo)系,用空間向量法求空間角.19、(1).x2+y2=1.(2)16【解析】
(1)直接利用極坐標(biāo)方程和參數(shù)方程公式化簡得到答案.(2)圓心到直線的距離為,故弦長為得到答案.【詳解】(1),即,即,即.,故.(2)圓心到直線的距離為,故弦長為.【點睛】本題考查了極坐標(biāo)方程和參數(shù)方程,圓的弦長,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.20、(1)(2)【解析】
(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,,即可求得結(jié)果.(2)由的幾何意義得,.將代入拋物線C的方程,利用韋達定理,,即可求得結(jié)果.【詳解】(1)因為,,代入得,所以拋物線C的極坐標(biāo)方程為.(2)將代入拋物線C的方程得,所以,,所以,由的幾何意義得,.【點睛】本題考查直角坐標(biāo)和極坐標(biāo)的轉(zhuǎn)化,考查極坐標(biāo)方程的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化與劃歸,數(shù)學(xué)運算的能力,難度一般.21、(1)見解析,,x[0,1];(2)P(,)時,視角∠EPF最大.【解析】
(1)以A為原點,l1為x軸,拋物線的對稱軸為y軸建系,設(shè)出方程,通過點的坐標(biāo)可求方程;(2)設(shè)出的坐標(biāo),表示出,利用基本不等式求解的最大值,從而可得觀測點P的坐標(biāo).【詳解】(1)以A為原點,l1為x軸,拋物線的對稱軸為y軸建系由題意知:B(1,0.5),設(shè)拋物線方程為代入點B得:p=1,故方程為,x[0,1];(2)設(shè)P(,),t[0,],作PQ⊥l3于Q,記∠EPQ=,∠FP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大連理工大學(xué)《大學(xué)IT5》2023-2024學(xué)年第二學(xué)期期末試卷
- 凍品倉儲合同范本(溫度異常賠償責(zé)任條款)
- 電力行業(yè)事故案例分析與教訓(xùn)反思
- 電子商務(wù)中合同簽訂的合規(guī)要點解析
- 2025年新高考藝術(shù)生數(shù)學(xué)突破講義 專題31 概率小題綜合訓(xùn)練
- 湖南中醫(yī)藥高等??茖W(xué)?!峨娨晹z像與編輯》2023-2024學(xué)年第二學(xué)期期末試卷
- 未來的商務(wù)趨勢與高效筆記本電的選擇和改進方向
- 電影中聲音設(shè)計與后期的對話
- 云南體育運動職業(yè)技術(shù)學(xué)院《微生物及免疫學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 地址遷移申請書
- 人工智能行業(yè)數(shù)據(jù)安全與隱私保護
- GB/T 9439-2023灰鑄鐵件
- (完整word版)Word信紙(A4橫條直接打印版)模板
- 向高層銷售:與決策者有效打交道
- DB32/T 4443-2023 罐區(qū)內(nèi)在役危險化學(xué)品(常低壓)儲罐管理規(guī)范
- 尼泊爾簡介課件
- 嬰幼兒托育機構(gòu)管理與運營實務(wù)高職PPT完整全套教學(xué)課件
- 新能源汽車電池石墨類負極材料一體化項目環(huán)境影響評價報告書
- 小學(xué)家長接送學(xué)生協(xié)議書
- IT服務(wù)連續(xù)性實現(xiàn)指南
- OEM合作協(xié)議(定稿)
評論
0/150
提交評論