




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省長沙市重點中學2025屆高考考前模擬數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)()的圖象過點,則()A.函數(shù)的值域是 B.點是的一個對稱中心C.函數(shù)的最小正周期是 D.直線是的一條對稱軸2.已知函數(shù),給出下列四個結(jié)論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對任意,都有成立,則的最小值為;其中正確結(jié)論的個數(shù)是()A. B. C. D.3.已知雙曲線:的左、右兩個焦點分別為,,若存在點滿足,則該雙曲線的離心率為()A.2 B. C. D.54.已知復數(shù),則的虛部是()A. B. C. D.15.若數(shù)列為等差數(shù)列,且滿足,為數(shù)列的前項和,則()A. B. C. D.6.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知拋物線,F(xiàn)為拋物線的焦點且MN為過焦點的弦,若,,則的面積為()A. B. C. D.8.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.9.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件10.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.11.的內(nèi)角的對邊分別為,若,則內(nèi)角()A. B. C. D.12.已知函數(shù),則()A.2 B.3 C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓與雙曲線有相同的焦點、,其中為左焦點.點為兩曲線在第一象限的交點,、分別為曲線、的離心率,若是以為底邊的等腰三角形,則的取值范圍為________.14.由于受到網(wǎng)絡電商的沖擊,某品牌的洗衣機在線下的銷售受到影響,承受了一定的經(jīng)濟損失,現(xiàn)將地區(qū)200家實體店該品牌洗衣機的月經(jīng)濟損失統(tǒng)計如圖所示,估算月經(jīng)濟損失的平均數(shù)為,中位數(shù)為n,則_________.15.己知函數(shù),若曲線在處的切線與直線平行,則__________.16.記為數(shù)列的前項和,若,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)新高考,取消文理科,實行“”,成績由語文、數(shù)學、外語統(tǒng)一高考成績和自主選考的3門普通高中學業(yè)水平考試等級性考試科目成績構(gòu)成.為了解各年齡層對新高考的了解情況,隨機調(diào)查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調(diào)查結(jié)果制成下表:年齡(歲)頻數(shù)515101055了解4126521(1)分別估計中青年和中老年對新高考了解的概率;(2)請根據(jù)上表完成下面列聯(lián)表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關(guān)?了解新高考不了解新高考總計中青年中老年總計附:.0.0500.0100.0013.8416.63510.828(3)若從年齡在的被調(diào)查者中隨機選取3人進行調(diào)查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.18.(12分)如圖,四棱錐中,底面,,點在線段上,且.(1)求證:平面;(2)若,,,,求二面角的正弦值.19.(12分)已知圓的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是是參數(shù)),若直線與圓相切,求實數(shù)的值.20.(12分)已知函數(shù)為實數(shù))的圖像在點處的切線方程為.(1)求實數(shù)的值及函數(shù)的單調(diào)區(qū)間;(2)設函數(shù),證明時,.21.(12分)已知點和橢圓.直線與橢圓交于不同的兩點,.(1)當時,求的面積;(2)設直線與橢圓的另一個交點為,當為中點時,求的值.22.(10分)某校為了解校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應等級進行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機抽取部分學生的答卷,統(tǒng)計結(jié)果及對應的頻率分布直方圖如下:等級不合格合格得分頻數(shù)624(1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);(2)其他條件不變,在評定等級為“合格”的學生中依次抽取2人進行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;(3)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中抽取10人進行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)函數(shù)的圖像過點,求出,可得,再利用余弦函數(shù)的圖像與性質(zhì),得出結(jié)論.【詳解】由函數(shù)()的圖象過點,可得,即,,,故,對于A,由,則,故A正確;對于B,當時,,故B錯誤;對于C,,故C錯誤;對于D,當時,,故D錯誤;故選:A【點睛】本題主要考查了二倍角的余弦公式、三角函數(shù)的圖像與性質(zhì),需熟記性質(zhì)與公式,屬于基礎題.2、C【解析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結(jié)合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯誤;當時,,單調(diào)遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.【點睛】本題考查三角函數(shù)的綜合運用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.3、B【解析】
利用雙曲線的定義和條件中的比例關(guān)系可求.【詳解】.選B.【點睛】本題主要考查雙曲線的定義及離心率,離心率求解時,一般是把已知條件,轉(zhuǎn)化為a,b,c的關(guān)系式.4、C【解析】
化簡復數(shù),分子分母同時乘以,進而求得復數(shù),再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點睛】本小題主要考查復數(shù)的乘法、除法運算,考查共軛復數(shù)的虛部,屬于基礎題.5、B【解析】
利用等差數(shù)列性質(zhì),若,則求出,再利用等差數(shù)列前項和公式得【詳解】解:因為,由等差數(shù)列性質(zhì),若,則得,.為數(shù)列的前項和,則.故選:.【點睛】本題考查等差數(shù)列性質(zhì)與等差數(shù)列前項和.(1)如果為等差數(shù)列,若,則.(2)要注意等差數(shù)列前項和公式的靈活應用,如.6、B【解析】
分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當,不充分故是必要不充分條件,答案選B【點睛】本題考查了充分必要條件,屬于簡單題.7、A【解析】
根據(jù)可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【詳解】由題意可知拋物線方程為,設點點,則由拋物線定義知,,則.由得,則.又MN為過焦點的弦,所以,則,所以.故選:A【點睛】本題考查拋物線的方程應用,同時也考查了焦半徑公式等.屬于中檔題.8、B【解析】
還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結(jié)果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關(guān)鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.9、C【解析】分析:從兩個方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當三角形是鈍角三角形時,也推不出成立,從而必要性也不滿足,從而選出正確的結(jié)果.詳解:由題意可得,在中,因為,所以,因為,所以,,結(jié)合三角形內(nèi)角的條件,故A,B同為銳角,因為,所以,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點睛:該題考查的是有關(guān)充分必要條件的判斷問題,在解題的過程中,需要用到不等式的等價轉(zhuǎn)化,余弦的和角公式,誘導公式等,需要明確對應此類問題的解題步驟,以及三角形形狀對應的特征.10、C【解析】
由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點睛】本題主要考查了雙曲線的標準方程及其簡單的幾何性質(zhì)的應用,其中解答中熟記雙曲線的幾何性質(zhì),準確運算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎題.11、C【解析】
由正弦定理化邊為角,由三角函數(shù)恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【點睛】本題考查正弦定理,考查兩角和的正弦公式和誘導公式,掌握正弦定理的邊角互化是解題關(guān)鍵.12、A【解析】
根據(jù)分段函數(shù)直接計算得到答案.【詳解】因為所以.故選:.【點睛】本題考查了分段函數(shù)計算,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設,由橢圓和雙曲線的定義得到,根據(jù)是以為底邊的等腰三角形,得到,從而有,根據(jù),得到,再利用導數(shù)法求的范圍.【詳解】設,由橢圓的定義得,由雙曲線的定義得,所以,因為是以為底邊的等腰三角形,所以,即,因為,所以,因為,所以,所以,即,而,因為,所以在上遞增,所以.故答案為:【點睛】本題主要考查橢圓,雙曲線的定義和幾何性質(zhì),還考查了運算求解的能力,屬于中檔題.14、360【解析】
先計算第一塊小矩形的面積,第二塊小矩形的面積,,面積和超過0.5,所以中位數(shù)在第二塊求解,然后再求得平均數(shù)作差即可.【詳解】第一塊小矩形的面積,第二塊小矩形的面積,故;而,故.故答案為:360.【點睛】本題考查頻率分布直方圖、樣本的數(shù)字特征,考查運算求解能力以及數(shù)形結(jié)合思想,屬于基礎題.15、【解析】
先求導,再根據(jù)導數(shù)的幾何意義,有求解.【詳解】因為函數(shù),所以,所以,解得.故答案為:【點睛】本題考查導數(shù)的幾何意義,還考查運算求解能力以及數(shù)形結(jié)合思想,屬于基礎題.16、-254【解析】
利用代入即可得到,即是等比數(shù)列,再利用等比數(shù)列的通項公式計算即可.【詳解】由已知,得,即,所以又,即,,所以是以-4為首項,2為公比的等比數(shù)列,所以,即,所以。故答案為:【點睛】本題考查已知與的關(guān)系求,考查學生的數(shù)學運算求解能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析,有95%的把握判斷了解新高考與年齡(中青年、中老年)有關(guān)聯(lián);(3)分布列見解析,.【解析】
(1)分別求出中青年、中老年對高考了解的頻數(shù),即可求出概率;(2)根據(jù)數(shù)據(jù)列出列聯(lián)表,求出的觀測值,對照表格,即可得出結(jié)論;(3)年齡在的被調(diào)查者共5人,其中了解新高考的有2人,可能取值為0,1,2,分別求出概率,列出隨機變量分布列,根據(jù)期望公式即可求解.【詳解】(1)由題中數(shù)據(jù)可知,中青年對新高考了解的概率,中老年對新高考了解的概率.(2)列聯(lián)表如圖所示了解新高考不了解新高考總計中青年22830老年81220總計302050,所以有95%的把握判斷了解新高考與年齡(中青年、中老年)有關(guān)聯(lián).(3)年齡在的被調(diào)查者共5人,其中了解新高考的有2人,則抽取的3人中了解新高考的人數(shù)可能取值為0,1,2,則;;.所以的分布列為012.【點睛】本題考查概率、獨立性檢驗及隨機變量分布列和期望,考查計算求解能力,屬于基礎題.18、(1)證明見解析(2)【解析】
(1)要證明平面,只需證明,,即可求得答案;(2)先根據(jù)已知證明四邊形為矩形,以為原點,為軸,為軸,為軸,建立坐標系,求得平面的法向量為,平面的法向量,設二面角的平面角為,,即可求得答案.【詳解】(1)平面,平面,.,,.又,平面.(2)由(1)可知.在中,,..又,,四邊形為矩形.以為原點,為軸,為軸,為軸,建立坐標系,如圖:則:,,,,:,設平面的法向量為,即,令,則,由題平面,即平面的法向量為由二面角的平面角為銳角,設二面角的平面角為即二面角的正弦值為:.【點睛】本題主要考查了求證線面垂直和向量法求二面角,解題關(guān)鍵是掌握線面垂直判斷定理和向量法求二面角的方法,考查了分析能力和計算能力,屬于中檔題.19、【解析】
將圓的極坐標方程化為直角坐標方程,直線的參數(shù)方程化為普通方程,再根據(jù)直線與圓相切,利用圓心到直線的距離等于半徑,即可求實數(shù)的值.【詳解】由,得,,即圓的方程為,又由消,得,直線與圓相切,,.【點睛】本題重點考查方程的互化,考查直線與圓的位置關(guān)系,解題的關(guān)鍵是利用圓心到直線的距離等于半徑,研究直線與圓相切.20、(1);函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)詳見解析.【解析】
試題分析:(1)由題得,根據(jù)曲線在點處的切線方程,列出方程組,求得的值,得到的解析式,即可求解函數(shù)的單調(diào)區(qū)間;(2)由(1)得根據(jù)由,整理得,設,轉(zhuǎn)化為函數(shù)的最值,即可作出證明.試題解析:(1)由題得,函數(shù)的定義域為,,因為曲線在點處的切線方程為,所以解得.令,得,當時,,在區(qū)間內(nèi)單調(diào)遞減;當時,,在區(qū)間內(nèi)單調(diào)遞增.所以函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)由(1)得,.由,得,即.要證,需證,即證,設,則要證,等價于證:.令,則,∴在區(qū)間內(nèi)單調(diào)遞增,,即,故.21、(1);(2)或【解析】
(1)聯(lián)立直線的方程和橢圓方程,求得交點的橫坐標,由此求得三角形的面積.(2)法一:根據(jù)的坐標求得的坐標,將的坐標都代入橢圓方程,化簡后求得的坐標,進而求得的值.法二:設出直線的方程,聯(lián)立直線的方程和橢圓的方程,化簡后寫出根與系數(shù)關(guān)系,結(jié)合求得點的坐標,進而求得的值.【詳解】(1)設
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑行業(yè)安全生產(chǎn)合同
- 合同制員工福利待遇調(diào)整趨勢
- 代理區(qū)域銷售合同書
- 【課件】串聯(lián)電路與并聯(lián)電路+課件-高二上學期物理人教版(2019)必修第三冊
- 2025年度IT服務外包合同范本
- 云南省元馬中學重點中學2025年初三下學期第一次質(zhì)量抽測數(shù)學試題含解析
- 供水供電合同
- 天津天獅學院《機械制圖上》2023-2024學年第二學期期末試卷
- 蘇州科技大學天平學院《幼兒歌曲彈唱》2023-2024學年第一學期期末試卷
- 浙江海洋大學《半導體制造與工藝》2023-2024學年第二學期期末試卷
- 人格障礙患者的護理
- 人工智能大模型
- 1輸變電工程施工質(zhì)量驗收統(tǒng)一表式(線路工程)-2024年版
- 2024年全國鄉(xiāng)村振興職業(yè)技能大賽“育嬰”賽項考試題庫(決賽用)
- 《內(nèi)在強大:應變?nèi)f難的力量》記錄
- TSHJX 067-2024 基于TACS的全自動運行線路綜合聯(lián)調(diào)技術(shù)規(guī)范
- 2024至2030年中國擦窗機器人產(chǎn)業(yè)競爭現(xiàn)狀及投資決策建議報告
- 益母草顆粒的保肝作用機制
- 中國經(jīng)濟史教學課件第八章近代農(nóng)業(yè)經(jīng)濟的發(fā)展
- 2024年東南亞生化需氧量(BOD)分析儀市場深度研究及預測報告
評論
0/150
提交評論