版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省廣安市廣安中學2025屆高三六校第一次聯(lián)考數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“”的否定為()A. B.C. D.2.已知平行于軸的直線分別交曲線于兩點,則的最小值為()A. B. C. D.3.已知集合,集合,那么等于()A. B. C. D.4.()A. B. C. D.5.直線l過拋物線的焦點且與拋物線交于A,B兩點,則的最小值是A.10 B.9 C.8 D.76.設(shè),則,則()A. B. C. D.7.已知數(shù)列滿足:)若正整數(shù)使得成立,則()A.16 B.17 C.18 D.198.已知公差不為0的等差數(shù)列的前項的和為,,且成等比數(shù)列,則()A.56 B.72 C.88 D.409.二項式展開式中,項的系數(shù)為()A. B. C. D.10.如圖,是圓的一條直徑,為半圓弧的兩個三等分點,則()A. B. C. D.11.已知定義在上的函數(shù)滿足,且當時,.設(shè)在上的最大值為(),且數(shù)列的前項的和為.若對于任意正整數(shù)不等式恒成立,則實數(shù)的取值范圍為()A. B. C. D.12.正方形的邊長為,是正方形內(nèi)部(不包括正方形的邊)一點,且,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某高校開展安全教育活動,安排6名老師到4個班進行講解,要求1班和2班各安排一名老師,其余兩個班各安排兩名老師,其中劉老師和王老師不在一起,則不同的安排方案有________種.14.如圖所示,平面BCC1B1⊥平面ABC,ABC=120,四邊形BCC1B1為正方形,且AB=BC=2,則異面直線BC1與AC所成角的余弦值為_____.15.已知數(shù)列為等比數(shù)列,,則_____.16.如圖是一個幾何體的三視圖,若它的體積是,則_________,該幾何體的表面積為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某學校為了解全校學生的體重情況,從全校學生中隨機抽取了100人的體重數(shù)據(jù),得到如下頻率分布直方圖,以樣本的頻率作為總體的概率.(1)估計這100人體重數(shù)據(jù)的平均值和樣本方差;(結(jié)果取整數(shù),同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)(2)從全校學生中隨機抽取3名學生,記為體重在的人數(shù),求的分布列和數(shù)學期望;(3)由頻率分布直方圖可以認為,該校學生的體重近似服從正態(tài)分布.若,則認為該校學生的體重是正常的.試判斷該校學生的體重是否正常?并說明理由.18.(12分)在直角坐標系中,點的坐標為,直線的參數(shù)方程為(為參數(shù),為常數(shù),且).以直角坐標系的原點為極點,軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系,圓的極坐標方程為.設(shè)點在圓外.(1)求的取值范圍.(2)設(shè)直線與圓相交于兩點,若,求的值.19.(12分)如圖,在四棱錐中,平面,四邊形為正方形,點為線段上的點,過三點的平面與交于點.將①,②,③中的兩個補充到已知條件中,解答下列問題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線與平面所成角的正弦值.20.(12分)如圖,在三棱柱中,、、分別是、、的中點.(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.21.(12分)已知數(shù)列,其前項和為,滿足,,其中,,,.⑴若,,(),求證:數(shù)列是等比數(shù)列;⑵若數(shù)列是等比數(shù)列,求,的值;⑶若,且,求證:數(shù)列是等差數(shù)列.22.(10分)已知函數(shù),若的解集為.(1)求的值;(2)若正實數(shù),,滿足,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
套用命題的否定形式即可.【詳解】命題“”的否定為“”,所以命題“”的否定為“”.故選:C【點睛】本題考查全稱命題的否定,屬于基礎(chǔ)題.2、A【解析】
設(shè)直線為,用表示出,,求出,令,利用導數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設(shè)直線為,則,,而滿足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點睛】本題考查導數(shù)知識的運用:求單調(diào)區(qū)間和極值、最值,考查化簡整理的運算能力,正確求導確定函數(shù)的最小值是關(guān)鍵,屬于中檔題.3、A【解析】
求出集合,然后進行并集的運算即可.【詳解】∵,,∴.故選:A.【點睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運算,屬于基礎(chǔ)題.4、B【解析】
利用復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】.故選B.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎(chǔ)題.5、B【解析】
根據(jù)拋物線中過焦點的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標準方程可知p=2因為直線l過拋物線的焦點,由過拋物線焦點的弦的性質(zhì)可知所以因為為線段長度,都大于0,由基本不等式可知,此時所以選B【點睛】本題考查了拋物線的基本性質(zhì)及其簡單應(yīng)用,基本不等式的用法,屬于中檔題.6、A【解析】
根據(jù)換底公式可得,再化簡,比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.【點睛】本題考查換底公式和對數(shù)的運算,屬于中檔題.7、B【解析】
計算,故,解得答案.【詳解】當時,,即,且.故,,故.故選:.【點睛】本題考查了數(shù)列的相關(guān)計算,意在考查學生的計算能力和對于數(shù)列公式方法的綜合應(yīng)用.8、B【解析】
,將代入,求得公差d,再利用等差數(shù)列的前n項和公式計算即可.【詳解】由已知,,,故,解得或(舍),故,.故選:B.【點睛】本題考查等差數(shù)列的前n項和公式,考查等差數(shù)列基本量的計算,是一道容易題.9、D【解析】
寫出二項式的通項公式,再分析的系數(shù)求解即可.【詳解】二項式展開式的通項為,令,得,故項的系數(shù)為.故選:D【點睛】本題主要考查了二項式定理的運算,屬于基礎(chǔ)題.10、B【解析】
連接、,即可得到,,再根據(jù)平面向量的數(shù)量積及運算律計算可得;【詳解】解:連接、,,是半圓弧的兩個三等分點,,且,所以四邊形為棱形,.故選:B【點睛】本題考查平面向量的數(shù)量積及其運算律的應(yīng)用,屬于基礎(chǔ)題.11、C【解析】
由已知先求出,即,進一步可得,再將所求問題轉(zhuǎn)化為對于任意正整數(shù)恒成立,設(shè),只需找到數(shù)列的最大值即可.【詳解】當時,則,,所以,,顯然當時,,故,,若對于任意正整數(shù)不等式恒成立,即對于任意正整數(shù)恒成立,即對于任意正整數(shù)恒成立,設(shè),,令,解得,令,解得,考慮到,故有當時,單調(diào)遞增,當時,有單調(diào)遞減,故數(shù)列的最大值為,所以.故選:C.【點睛】本題考查數(shù)列中的不等式恒成立問題,涉及到求函數(shù)解析、等比數(shù)列前n項和、數(shù)列單調(diào)性的判斷等知識,是一道較為綜合的數(shù)列題.12、C【解析】
分別以直線為軸,直線為軸建立平面直角坐標系,設(shè),根據(jù),可求,而,化簡求解.【詳解】解:建立以為原點,以直線為軸,直線為軸的平面直角坐標系.設(shè),,,則,,由,即,得.所以=,所以當時,的最小值為.故選:C.【點睛】本題考查向量的數(shù)量積的坐標表示,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、156【解析】
先考慮每班安排的老師人數(shù),然后計算出對應(yīng)的方案數(shù),再考慮劉老師和王老師在同一班級的方案數(shù),兩者作差即可得到不同安排的方案數(shù).【詳解】安排6名老師到4個班則每班老師人數(shù)為1,1,2,2,共有種,劉老師和王老師分配到一個班,共有種,所以種.故答案為:.【點睛】本題考查排列組合的綜合應(yīng)用,難度一般.對于分組的問題,首先確定每組的數(shù)量,對于其中特殊元素,可通過“正難則反”的思想進行分析.14、【解析】
將平移到和相交的位置,解三角形求得線線角的余弦值.【詳解】過作,過作,畫出圖像如下圖所示,由于四邊形是平行四邊形,故,所以是所求線線角或其補角.在三角形中,,故.【點睛】本小題主要考查空間兩條直線所成角的余弦值的計算,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于中檔題.15、81【解析】
設(shè)數(shù)列的公比為,利用等比數(shù)列通項公式求出,代入等比數(shù)列通項公式即可求解.【詳解】設(shè)數(shù)列的公比為,由題意知,因為,由等比數(shù)列通項公式可得,,解得,由等比數(shù)列通項公式可得,.故答案為:【點睛】本題考查等比數(shù)列通項公式;考查運算求解能力;屬于基礎(chǔ)題.16、;【解析】試題分析:如圖:此幾何體是四棱錐,底面是邊長為的正方形,平面平面,并且,,所以體積是,解得,四個側(cè)面都是直角三角形,所以計算出邊長,表面積是考點:1.三視圖;2.幾何體的表面積.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)60;25(2)見解析,2.1(3)可以認為該校學生的體重是正常的.見解析【解析】
(1)根據(jù)頻率分布直方圖可求出平均值和樣本方差;(2)由題意知服從二項分布,分別求出,,,,進而可求出分布列以及數(shù)學期望;(3)由第一問可知服從正態(tài)分布,繼而可求出的值,從而可判斷.【詳解】解:(1)(2)由已知可得從全校學生中隨機抽取1人,體重在的概率為0.7.隨機拍取3人,相當于3次獨立重復實驗,隨機交量服從二項分布,則,,,,所以的分布列為:01230.0270.1890.4410.343數(shù)學期望(3)由題意知服從正態(tài)分布,則,所以可以認為該校學生的體重是正常的.【點睛】本題考查了由頻率分布直方圖求進行數(shù)據(jù)估計,考查了二項分布,考查了正態(tài)分布.注意,統(tǒng)計類問題,如果題目中沒有特殊說明,則求出數(shù)據(jù)的精度和題目中數(shù)據(jù)的小數(shù)后位數(shù)相同.18、(1)(2)【解析】
(1)首先將曲線化為直角坐標方程,由點在圓外,則解得即可;(2)將直線的參數(shù)方程代入圓的普通方程,設(shè)、對應(yīng)的參數(shù)分別為,列出韋達定理,由及在圓的上方,得,即即可解得;【詳解】解:(1)曲線的直角坐標方程為.由點在圓外,得點的坐標為,結(jié)合,解得.故的取值范圍是.(2)由直線的參數(shù)方程,得直線過點,傾斜角為,將直線的參數(shù)方程代入,并整理得,其中.設(shè)、對應(yīng)的參數(shù)分別為,則,.由及在圓的上方,得,即,代入①,得,,消去,得,結(jié)合,解得.故的值是.【點睛】本題考查極坐標方程化為直角坐標方程,直線的參數(shù)方程的幾何意義的應(yīng)用,屬于中檔題.19、(1);(2).【解析】
若補充②③根據(jù)已知可得平面,從而有,結(jié)合,可得平面,故有,而,得到,②③成立與①②相同,①③成立,可得,所以任意補充兩個條件,結(jié)果都一樣,以①②作為條件分析;(1)設(shè),可得,進而求出梯形的面積,可求出,即可求出結(jié)論;(2),以為坐標原點,建立空間坐標系,求出坐標,由(1)得為平面的法向量,根據(jù)空間向量的線面角公式即可求解.【詳解】第一種情況:若將①,②作為已知條件,解答如下:(1)設(shè)平面為平面.∵,∴平面,而平面平面,∴,又為中點.設(shè),則.在三角形中,,由知平面,∴,∴梯形的面積,,,平面,,,∴,故,.(2)如圖,分別以所在直線為軸建立空間直角坐標系,設(shè),則,由(1)得為平面的一個法向量,因為,所以直線與平面所成角的正弦值為.第二種情況:若將①,③作為已知條件,則由知平面,,又,所以平面,,又,故為中點,即,解答如上不變.第三種情況:若將②,③作為已知條件,由及第二種情況知,又,易知,解答仍如上不變.【點睛】本題考查空間點、線、面位置關(guān)系,以及體積、直線與平面所成的角,考查計算求解能力,屬于中檔題.20、(1)證明見解析;(2).【解析】
(1)連接,連接、交于點,并連接,則點為的中點,利用中位線的性質(zhì)得出,,利用空間平行線的傳遞性可得出,然后利用線面平行的判定定理可證得結(jié)論;(2)推導出平面,并計算出,由此可得出到平面的距離為,即可得解.【詳解】(1)連接,連接、交于點,并連接,則點為的中點,、分別為、的中點,則,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影為,平面,平面,,為正三角形,且為的中點,,,平面,且,因此,到平面的距離為.【點睛】本題考查線面平行的證明,同時也考查了點到平面距離的計算,考查推理能力與計算能力,屬于中等題.21、(1)見解析(2)(3)見解析【解析】試題分析:(1)(),所以,故數(shù)列是等比數(shù)列;(2)利用特殊值法,得,故;(3)得,所以,得,可證數(shù)列是等差數(shù)列.試題解析:(1)證明:若,則當(),所以,即,所以,又由,,得,,即,所以,故數(shù)列是等比數(shù)列.(2)若是等比數(shù)列,設(shè)其公比為(),當時,,即,得,①當時,,即,得,②當時,,即,得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生活物品配對課程設(shè)計
- 文學音樂融合課程設(shè)計
- 法醫(yī)實驗課程設(shè)計
- 電路板原理課程設(shè)計
- 真空泵課程設(shè)計
- 愛國課程設(shè)計體育
- 污水廠課程設(shè)計sbr
- 樁身配筋圖 課程設(shè)計
- 電容器制造中的空氣質(zhì)量控制考核試卷
- 比值課程設(shè)計
- 新修訂中華人民共和國行政許可法全文解讀學習
- 廣東省廣州市花都區(qū)2024年七年級上學期期末數(shù)學試題【附答案】
- 期末測試模擬練習 (含答案) 江蘇省蘇州市2024-2025學年統(tǒng)編版語文七年級上冊
- 上海市徐匯區(qū)2024-2025學年高一語文下學期期末試題含解析
- 品質(zhì)年度總結(jié)及來年計劃
- 學生體質(zhì)健康存在的主要問題及改進措施
- 2024年執(zhí)業(yè)藥師資格繼續(xù)教育定期考試題庫(附含答案)
- 線性代數(shù)知到智慧樹章節(jié)測試課后答案2024年秋貴州理工學院
- 建筑幕墻工程檢測知識考試題庫500題(含答案)
- 鋼棚鋼結(jié)構(gòu)施工方案
- 新版第三類醫(yī)療器械分類目錄
評論
0/150
提交評論