版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆安徽省黌學(xué)高級(jí)中學(xué)高三考前熱身數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.()A. B. C. D.2.已知復(fù)數(shù)滿(mǎn)足:(為虛數(shù)單位),則()A. B. C. D.3.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()4.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.5.把滿(mǎn)足條件(1),,(2),,使得的函數(shù)稱(chēng)為“D函數(shù)”,下列函數(shù)是“D函數(shù)”的個(gè)數(shù)為()①②③④⑤A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)6.將一塊邊長(zhǎng)為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.127.已知橢圓的焦點(diǎn)分別為,,其中焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,且橢圓與拋物線(xiàn)的兩個(gè)交點(diǎn)連線(xiàn)正好過(guò)點(diǎn),則橢圓的離心率為()A. B. C. D.8.已知橢圓:的左,右焦點(diǎn)分別為,,過(guò)的直線(xiàn)交橢圓于,兩點(diǎn),若,且的三邊長(zhǎng),,成等差數(shù)列,則的離心率為()A. B. C. D.9.單位正方體ABCD-,黑、白兩螞蟻從點(diǎn)A出發(fā)沿棱向前爬行,每走完一條棱稱(chēng)為“走完一段”.白螞蟻爬地的路線(xiàn)是AA1→A1D1→‥,黑螞蟻爬行的路線(xiàn)是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線(xiàn)必須是異面直線(xiàn)(iN*).設(shè)白、黑螞蟻都走完2020段后各自停止在正方體的某個(gè)頂點(diǎn)處,這時(shí)黑、白兩螞蟻的距離是()A.1 B. C. D.010.已知復(fù)數(shù)z,則復(fù)數(shù)z的虛部為()A. B. C.i D.i11.不等式的解集記為,有下面四個(gè)命題:;;;.其中的真命題是()A. B. C. D.12.已知向量,且,則m=()A.?8 B.?6C.6 D.8二、填空題:本題共4小題,每小題5分,共20分。13.在的展開(kāi)式中,所有的奇數(shù)次冪項(xiàng)的系數(shù)和為-64,則實(shí)數(shù)的值為_(kāi)_________.14.在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)是直線(xiàn):上位于第一象限內(nèi)的一點(diǎn).已知以為直徑的圓被直線(xiàn)所截得的弦長(zhǎng)為,則點(diǎn)的坐標(biāo)__________.15.已知數(shù)列滿(mǎn)足對(duì)任意,若,則數(shù)列的通項(xiàng)公式________.16.各項(xiàng)均為正數(shù)的等比數(shù)列中,為其前項(xiàng)和,若,且,則公比的值為_(kāi)____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.已知直線(xiàn)的參數(shù)方程為(為參數(shù)),曲線(xiàn)的極坐標(biāo)方程為;(1)求直線(xiàn)的直角坐標(biāo)方程和曲線(xiàn)的直角坐標(biāo)方程;(2)若直線(xiàn)與曲線(xiàn)交點(diǎn)分別為,,點(diǎn),求的值.18.(12分)如圖,點(diǎn)為圓:上一動(dòng)點(diǎn),過(guò)點(diǎn)分別作軸,軸的垂線(xiàn),垂足分別為,,連接延長(zhǎng)至點(diǎn),使得,點(diǎn)的軌跡記為曲線(xiàn).(1)求曲線(xiàn)的方程;(2)若點(diǎn),分別位于軸與軸的正半軸上,直線(xiàn)與曲線(xiàn)相交于,兩點(diǎn),且,試問(wèn)在曲線(xiàn)上是否存在點(diǎn),使得四邊形為平行四邊形,若存在,求出直線(xiàn)方程;若不存在,說(shuō)明理由.19.(12分)已知函數(shù),.(1)當(dāng)時(shí),判斷是否是函數(shù)的極值點(diǎn),并說(shuō)明理由;(2)當(dāng)時(shí),不等式恒成立,求整數(shù)的最小值.20.(12分)在世界讀書(shū)日期間,某地區(qū)調(diào)查組對(duì)居民閱讀情況進(jìn)行了調(diào)查,獲得了一個(gè)容量為200的樣本,其中城鎮(zhèn)居民140人,農(nóng)村居民60人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農(nóng)村居民有30人.(1)填寫(xiě)下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān)?城鎮(zhèn)居民農(nóng)村居民合計(jì)經(jīng)常閱讀10030不經(jīng)常閱讀合計(jì)200(2)從該地區(qū)城鎮(zhèn)居民中,隨機(jī)抽取5位居民參加一次閱讀交流活動(dòng),記這5位居民中經(jīng)常閱讀的人數(shù)為,若用樣本的頻率作為概率,求隨機(jī)變量的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82821.(12分)中,內(nèi)角的對(duì)邊分別為,.(1)求的大??;(2)若,且為的重心,且,求的面積.22.(10分)在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.(1)求曲線(xiàn)的普通方程和直線(xiàn)的直角坐標(biāo)方程;(2)設(shè)點(diǎn),若直線(xiàn)與曲線(xiàn)相交于、兩點(diǎn),求的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
分子分母同乘,即根據(jù)復(fù)數(shù)的除法法則求解即可.【詳解】解:,故選:A【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.2、A【解析】
利用復(fù)數(shù)的乘法、除法運(yùn)算求出,再根據(jù)共軛復(fù)數(shù)的概念即可求解.【詳解】由,則,所以.故選:A【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算、共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.3、D【解析】
由題意利用兩個(gè)向量坐標(biāo)形式的運(yùn)算法則,兩個(gè)向量平行、垂直的性質(zhì),得出結(jié)論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標(biāo)對(duì)應(yīng)不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標(biāo)對(duì)應(yīng)不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點(diǎn)睛】本題主要考查兩個(gè)向量坐標(biāo)形式的運(yùn)算,兩個(gè)向量平行、垂直的性質(zhì),屬于基礎(chǔ)題.4、B【解析】
由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當(dāng);當(dāng)綜上:.故選:B【點(diǎn)睛】本題考查了條件分支的程序框圖,考查了學(xué)生邏輯推理,分類(lèi)討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.5、B【解析】
滿(mǎn)足(1)(2)的函數(shù)是偶函數(shù)且值域關(guān)于原點(diǎn)對(duì)稱(chēng),分別對(duì)所給函數(shù)進(jìn)行驗(yàn)證.【詳解】滿(mǎn)足(1)(2)的函數(shù)是偶函數(shù)且值域關(guān)于原點(diǎn)對(duì)稱(chēng),①不滿(mǎn)足(2);②不滿(mǎn)足(1);③不滿(mǎn)足(2);④⑤均滿(mǎn)足(1)(2).故選:B.【點(diǎn)睛】本題考查新定義函數(shù)的問(wèn)題,涉及到函數(shù)的性質(zhì),考查學(xué)生邏輯推理與分析能力,是一道容易題.6、D【解析】
推導(dǎo)出,且,,,設(shè)中點(diǎn)為,則平面,由此能表示出該容器的體積,從而求出參數(shù)的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設(shè)中點(diǎn)為,則平面,∴,∴,解得.故選:D【點(diǎn)睛】本題考查三視圖和錐體的體積計(jì)算公式的應(yīng)用,屬于中檔題.7、B【解析】
根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì)、拋物線(xiàn)的幾何性質(zhì),考查了學(xué)生的計(jì)算能力,屬于中檔題8、C【解析】
根據(jù)等差數(shù)列的性質(zhì)設(shè)出,,,利用勾股定理列方程,結(jié)合橢圓的定義,求得.再利用勾股定理建立的關(guān)系式,化簡(jiǎn)后求得離心率.【詳解】由已知,,成等差數(shù)列,設(shè),,.由于,據(jù)勾股定理有,即,化簡(jiǎn)得;由橢圓定義知的周長(zhǎng)為,有,所以,所以;在直角中,由勾股定理,,∴離心率.故選:C【點(diǎn)睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數(shù)列的性質(zhì),屬于中檔題.9、B【解析】
根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過(guò)幾段后又回到起點(diǎn),得到每爬1步回到起點(diǎn),周期為1.計(jì)算黑螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個(gè)點(diǎn)以及計(jì)算白螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個(gè)點(diǎn),即可計(jì)算出它們的距離.【詳解】由題意,白螞蟻爬行路線(xiàn)為AA1→A1D1→D1C1→C1C→CB→BA,即過(guò)1段后又回到起點(diǎn),可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點(diǎn);同理,黑螞蟻爬行路線(xiàn)為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點(diǎn),所以它們此時(shí)的距離為.故選B.【點(diǎn)睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問(wèn)題,考查空間想象與推理能力,屬于中等題.10、B【解析】
利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出【詳解】,則復(fù)數(shù)z的虛部為.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.11、A【解析】
作出不等式組表示的可行域,然后對(duì)四個(gè)選項(xiàng)一一分析可得結(jié)果.【詳解】作出可行域如圖所示,當(dāng)時(shí),,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A【點(diǎn)睛】此題考查命題的真假判斷與應(yīng)用,著重考查作圖能力,熟練作圖,正確分析是關(guān)鍵,屬于中檔題.12、D【解析】
由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運(yùn)算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、3或-1【解析】
設(shè),分別令、,兩式相減即可得,即可得解.【詳解】設(shè),令,則①,令,則②,則①-②得,則,解得或.故答案為:3或-1.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了運(yùn)算能力,屬于中檔題.14、【解析】
依題意畫(huà)圖,設(shè),根據(jù)圓的直徑所對(duì)的圓周角為直角,可得,通過(guò)勾股定理得,再利用兩點(diǎn)間的距離公式即可求出,進(jìn)而得出點(diǎn)坐標(biāo).【詳解】解:依題意畫(huà)圖,設(shè)以為直徑的圓被直線(xiàn)所截得的弦長(zhǎng)為,且,又因?yàn)闉閳A的直徑,則所對(duì)的圓周角,則,則為點(diǎn)到直線(xiàn):的距離.所以,則.又因?yàn)辄c(diǎn)在直線(xiàn):上,設(shè),則.解得,則.故答案為:【點(diǎn)睛】本題考查了直線(xiàn)與圓的位置關(guān)系,考查了兩點(diǎn)間的距離公式,點(diǎn)到直線(xiàn)的距離公式,是基礎(chǔ)題.15、【解析】
由可得,利用等比數(shù)列的通項(xiàng)公式可得,再利用累加法求和與等比數(shù)列的求和公式,即可得出結(jié)論.【詳解】由,得,數(shù)列是等比數(shù)列,首項(xiàng)為2,公比為2,,,,,滿(mǎn)足上式,.故答案為:.【點(diǎn)睛】本題考查數(shù)列的通項(xiàng)公式,遞推公式轉(zhuǎn)化為等比數(shù)列是解題的關(guān)鍵,利用累加法求通項(xiàng)公式,屬于中檔題.16、【解析】
將已知由前n項(xiàng)和定義整理為,再由等比數(shù)列性質(zhì)求得公比,最后由數(shù)列各項(xiàng)均為正數(shù),舍根得解.【詳解】因?yàn)榧从值缺葦?shù)列各項(xiàng)均為正數(shù),故故答案為:【點(diǎn)睛】本題考查在等比數(shù)列中由前n項(xiàng)和關(guān)系求公比,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ),曲線(xiàn)(Ⅱ)【解析】試題分析:(1)消去參數(shù)可得直線(xiàn)的直角坐標(biāo)系方程,由可得曲線(xiàn)的直角坐標(biāo)方程;(2)將(為參數(shù))代入曲線(xiàn)的方程得:,,利用韋達(dá)定理求解即可.試題解析:(1),曲線(xiàn),(2)將(為參數(shù))代入曲線(xiàn)的方程得:.所以.所以.18、(1)(2)不存在;詳見(jiàn)解析【解析】
(1)設(shè),,,通過(guò),即為的中點(diǎn),轉(zhuǎn)化求解,點(diǎn)的軌跡的方程.(2)設(shè)直線(xiàn)的方程為,先根據(jù),可得,①,再根據(jù)韋達(dá)定理,點(diǎn)在橢圓上可得,②,將①代入②可得,該方程無(wú)解,問(wèn)題得以解決【詳解】(1)設(shè),,則,,由題意知,所以為中點(diǎn),由中點(diǎn)坐標(biāo)公式得,即,又點(diǎn)在圓:上,故滿(mǎn)足,得.曲線(xiàn)的方程.(2)由題意知直線(xiàn)的斜率存在且不為零,設(shè)直線(xiàn)的方程為,因?yàn)?,故,即①,?lián)立,消去得:,設(shè),,,,,因?yàn)樗倪呅螢槠叫兴倪呅?,故,點(diǎn)在橢圓上,故,整理得②,將①代入②,得,該方程無(wú)解,故這樣的直線(xiàn)不存在.【點(diǎn)睛】本題考查點(diǎn)的軌跡方程的求法、滿(mǎn)足條件的點(diǎn)是否存在的判斷與直線(xiàn)方程的求法,考查數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.19、(1)是函數(shù)的極大值點(diǎn),理由詳見(jiàn)解析;(2)1.【解析】
(1)將直接代入,對(duì)求導(dǎo)得,由于函數(shù)單調(diào)性不好判斷,故而構(gòu)造函數(shù),繼續(xù)求導(dǎo),判斷導(dǎo)函數(shù)在左右兩邊的正負(fù)情況,最后得出,是函數(shù)的極大值點(diǎn);(2)利用題目已有條件得,再證明時(shí),不等式恒成立,即證,從而可知整數(shù)的最小值為1.【詳解】解:(1)當(dāng)時(shí),.令,則當(dāng)時(shí),.即在內(nèi)為減函數(shù),且∴當(dāng)時(shí),;當(dāng)時(shí),.∴在內(nèi)是增函數(shù),在內(nèi)是減函數(shù).綜上,是函數(shù)的極大值點(diǎn).(2)由題意,得,即.現(xiàn)證明當(dāng)時(shí),不等式成立,即.即證令則∴當(dāng)時(shí),;當(dāng)時(shí),.∴在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,的最大值為.∴當(dāng)時(shí),.即當(dāng)時(shí),不等式成立.綜上,整數(shù)的最小值為.【點(diǎn)睛】本題考查學(xué)生利用導(dǎo)數(shù)處理函數(shù)的極值,最值,判斷函數(shù)的單調(diào)性,由此來(lái)求解函數(shù)中的參數(shù)的取值范圍,對(duì)學(xué)生要求較高,然后需要學(xué)生能構(gòu)造新函數(shù)處理恒成立問(wèn)題,為難題20、(1)見(jiàn)解析,有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān).(2)【解析】
(1)根據(jù)題意填寫(xiě)列聯(lián)表,利用公式求出,比較與6.635的大小得結(jié)論;(2)由樣本數(shù)據(jù)可得經(jīng)常閱讀的人的概率是,則,根據(jù)二項(xiàng)分布的期望公式計(jì)算可得;【詳解】解:(1)由題意可得:城鎮(zhèn)居民農(nóng)村居民合計(jì)經(jīng)常閱讀10030130不經(jīng)常閱讀403070合計(jì)14060200則,所以有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān).(2)根據(jù)樣本估計(jì),從該地區(qū)城鎮(zhèn)居民中隨機(jī)抽取1人,抽到經(jīng)常閱讀的人的概率是,且,所以隨機(jī)變量的期望為.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查離散型隨機(jī)變量的數(shù)學(xué)期望的計(jì)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.21、(1);(2)【解析】
(1)利用正弦定理,轉(zhuǎn)化為,分析運(yùn)算即得解;(2)由為的重心,得到,平方可得解c,由面積公式即得解.【詳解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于為的重心故,∴解得或舍∴的面積為.【點(diǎn)睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 特級(jí)教師的拼音課程設(shè)計(jì)
- 真空脫氯塔課程設(shè)計(jì)
- 博物館玻璃幕墻專(zhuān)項(xiàng)施工方案
- 《基于DeST-h模型模擬的街區(qū)空間形態(tài)對(duì)建筑能耗影響研究分析》
- 橋梁施工的勞務(wù)保障方案
- 道路運(yùn)輸企業(yè)主要負(fù)責(zé)人和安全生產(chǎn)管理人員考試同步練習(xí)模擬題大全附答案
- 2024年生產(chǎn)工序合作條款及合同版B版
- 二零二五年度通信設(shè)備代理采購(gòu)合同
- 2024年電子競(jìng)技團(tuán)隊(duì)組建與管理合同
- 2024年度商品房買(mǎi)賣(mài)合同附屬設(shè)施移交范本3篇
- 新蘇教版3三年級(jí)數(shù)學(xué)上冊(cè)(表格式)教案【全冊(cè)】
- DB11∕T 1735-2020 地鐵正線(xiàn)周邊建設(shè)敏感建筑物項(xiàng)目環(huán)境振動(dòng)控制規(guī)范
- 高等教育心理學(xué)試題及答案(高校教師資格考試)
- 2024中國(guó)華電集團(tuán)限公司校招+社招(高頻重點(diǎn)提升專(zhuān)題訓(xùn)練)共500題附帶答案詳解
- 創(chuàng)新創(chuàng)業(yè)創(chuàng)造:職場(chǎng)競(jìng)爭(zhēng)力密鑰智慧樹(shù)知到期末考試答案章節(jié)答案2024年上海對(duì)外經(jīng)貿(mào)大學(xué)
- 律師服務(wù)收費(fèi)合同范本
- 存款保險(xiǎn)知識(shí)競(jìng)賽題庫(kù)(筆試環(huán)節(jié))附有答案
- 貴州省黔南州2023-2024學(xué)年度上學(xué)期期末質(zhì)量監(jiān)測(cè)八年級(jí)物理試卷
- 籃球智慧樹(shù)知到期末考試答案章節(jié)答案2024年溫州理工學(xué)院
- 年度安全事故統(tǒng)計(jì)表
- 中學(xué)體育節(jié)競(jìng)賽規(guī)程活動(dòng)方案
評(píng)論
0/150
提交評(píng)論