襄陽汽車職業(yè)技術學院《深度學習前沿》2023-2024學年第一學期期末試卷_第1頁
襄陽汽車職業(yè)技術學院《深度學習前沿》2023-2024學年第一學期期末試卷_第2頁
襄陽汽車職業(yè)技術學院《深度學習前沿》2023-2024學年第一學期期末試卷_第3頁
襄陽汽車職業(yè)技術學院《深度學習前沿》2023-2024學年第一學期期末試卷_第4頁
襄陽汽車職業(yè)技術學院《深度學習前沿》2023-2024學年第一學期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共3頁襄陽汽車職業(yè)技術學院《深度學習前沿》

2023-2024學年第一學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、假設正在比較不同的聚類算法,用于對一組沒有標簽的客戶數(shù)據(jù)進行分組。如果數(shù)據(jù)分布不規(guī)則且存在不同密度的簇,以下哪種聚類算法可能更適合?()A.K-Means算法B.層次聚類算法C.密度聚類算法(DBSCAN)D.均值漂移聚類算法2、在機器學習中,降維是一種常見的操作,用于減少特征的數(shù)量。以下哪種降維方法是基于線性變換的?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-SNED.以上都是3、某研究團隊正在開發(fā)一個用于預測股票價格的機器學習模型,需要考慮市場的動態(tài)性和不確定性。以下哪種模型可能更適合處理這種復雜的時間序列數(shù)據(jù)?()A.長短時記憶網絡(LSTM)結合注意力機制B.門控循環(huán)單元(GRU)與卷積神經網絡(CNN)的組合C.隨機森林與自回歸移動平均模型(ARMA)的融合D.以上模型都有可能4、假設我們有一個時間序列數(shù)據(jù),想要預測未來的值。以下哪種機器學習算法可能不太適合()A.線性回歸B.長短期記憶網絡(LSTM)C.隨機森林D.自回歸移動平均模型(ARMA)5、考慮一個回歸問題,我們要預測房價。數(shù)據(jù)集包含了房屋的面積、房間數(shù)量、地理位置等特征以及對應的房價。在選擇評估指標來衡量模型的性能時,需要綜合考慮模型的準確性和誤差的性質。以下哪個評估指標不僅考慮了預測值與真實值的偏差,還考慮了偏差的平方?()A.平均絕對誤差(MAE)B.均方誤差(MSE)C.決定系數(shù)(R2)D.準確率(Accuracy)6、在處理不平衡數(shù)據(jù)集時,以下關于解決數(shù)據(jù)不平衡問題的方法,哪一項是不正確的?()A.過采樣方法通過增加少數(shù)類樣本的數(shù)量來平衡數(shù)據(jù)集B.欠采樣方法通過減少多數(shù)類樣本的數(shù)量來平衡數(shù)據(jù)集C.合成少數(shù)類過采樣技術(SMOTE)通過合成新的少數(shù)類樣本來平衡數(shù)據(jù)集D.數(shù)據(jù)不平衡對模型性能沒有影響,不需要采取任何措施來處理7、機器學習中,批量歸一化(BatchNormalization)的主要作用是()A.加快訓練速度B.防止過擬合C.提高模型精度D.以上都是8、在機器學習中,交叉驗證是一種常用的評估模型性能和選擇超參數(shù)的方法。假設我們正在使用K折交叉驗證來評估一個分類模型。以下關于交叉驗證的描述,哪一項是不準確的?()A.將數(shù)據(jù)集隨機分成K個大小相等的子集,依次選擇其中一個子集作為測試集,其余子集作為訓練集B.通過計算K次實驗的平均準確率等指標來評估模型的性能C.可以在交叉驗證過程中同時調整多個超參數(shù),找到最優(yōu)的超參數(shù)組合D.交叉驗證只適用于小數(shù)據(jù)集,對于大數(shù)據(jù)集計算成本過高,不適用9、在構建一個機器學習模型時,如果數(shù)據(jù)中存在噪聲,以下哪種方法可以幫助減少噪聲的影響()A.增加正則化項B.減少訓練輪數(shù)C.增加模型的復雜度D.以上方法都不行10、假設正在開發(fā)一個用于推薦系統(tǒng)的深度學習模型,需要考慮用戶的短期興趣和長期興趣。以下哪種模型結構可以同時捕捉這兩種興趣?()A.注意力機制與循環(huán)神經網絡的結合B.多層感知機與卷積神經網絡的組合C.生成對抗網絡與自編碼器的融合D.以上模型都有可能11、在一個推薦系統(tǒng)中,為了提高推薦的多樣性和新穎性,以下哪種方法可能是有效的?()A.引入隨機推薦,增加推薦結果的不確定性,但可能降低相關性B.基于內容的多樣性優(yōu)化,選擇不同類型的物品進行推薦,但可能忽略用戶偏好C.探索-利用平衡策略,在推薦熟悉物品和新物品之間找到平衡,但難以精確控制D.以上方法結合使用,并根據(jù)用戶反饋動態(tài)調整12、在機器學習中,特征選擇是一項重要的任務,旨在從眾多的原始特征中選擇出對模型性能有顯著影響的特征。假設我們有一個包含大量特征的數(shù)據(jù)集,在進行特征選擇時,以下哪種方法通常不被采用?()A.基于相關性分析,選擇與目標變量高度相關的特征B.隨機選擇一部分特征,進行試驗和比較C.使用遞歸特征消除(RFE)方法,逐步篩選特征D.基于領域知識和經驗,手動選擇特征13、在進行模型壓縮時,以下關于模型壓縮方法的描述,哪一項是不準確的?()A.剪枝是指刪除模型中不重要的權重或神經元,減少模型的參數(shù)量B.量化是將模型的權重進行低精度表示,如從32位浮點數(shù)轉換為8位整數(shù)C.知識蒸餾是將復雜模型的知識轉移到一個較小的模型中,實現(xiàn)模型壓縮D.模型壓縮會導致模型性能嚴重下降,因此在實際應用中應盡量避免使用14、在使用樸素貝葉斯算法進行分類時,以下關于樸素貝葉斯的假設和特點,哪一項是不正確的?()A.假設特征之間相互獨立,簡化了概率計算B.對于連續(xù)型特征,通常需要先進行離散化處理C.樸素貝葉斯算法對輸入數(shù)據(jù)的分布沒有要求,適用于各種類型的數(shù)據(jù)D.樸素貝葉斯算法在處理高維度數(shù)據(jù)時性能較差,容易出現(xiàn)過擬合15、假設我們要使用機器學習算法來預測股票價格的走勢。以下哪種數(shù)據(jù)特征可能對預測結果幫助較?。ǎ〢.公司的財務報表數(shù)據(jù)B.社交媒體上關于該股票的討論熱度C.股票代碼D.宏觀經濟指標16、在評估機器學習模型的性能時,通常會使用多種指標。假設我們有一個二分類模型,用于預測患者是否患有某種疾病。以下關于模型評估指標的描述,哪一項是不正確的?()A.準確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,但在類別不平衡的情況下可能不準確B.召回率是被正確預測為正例的樣本數(shù)占實際正例樣本數(shù)的比例C.F1分數(shù)是準確率和召回率的調和平均值,綜合考慮了模型的準確性和全面性D.均方誤差(MSE)常用于二分類問題的模型評估,值越小表示模型性能越好17、假設正在研究一個自然語言處理任務,需要對句子進行語義理解。以下哪種深度學習模型在捕捉句子的長期依賴關系方面表現(xiàn)較好?()A.雙向長短時記憶網絡(BiLSTM)B.卷積神經網絡(CNN)C.圖卷積神經網絡(GCN)D.以上模型都有其特點18、在進行機器學習模型的訓練時,過擬合是一個常見的問題。假設我們正在訓練一個決策樹模型來預測客戶是否會購買某種產品,給定了客戶的個人信息和購買歷史等數(shù)據(jù)。以下關于過擬合的描述和解決方法,哪一項是錯誤的?()A.過擬合表現(xiàn)為模型在訓練集上表現(xiàn)很好,但在測試集上表現(xiàn)不佳B.增加訓練數(shù)據(jù)的數(shù)量可以有效地減少過擬合的發(fā)生C.對決策樹進行剪枝操作,即刪除一些不重要的分支,可以防止過擬合D.降低模型的復雜度,例如減少決策樹的深度,會導致模型的擬合能力下降,無法解決過擬合問題19、當使用樸素貝葉斯算法進行分類時,假設特征之間相互獨立。但在實際數(shù)據(jù)中,如果特征之間存在一定的相關性,這會對算法的性能產生怎樣的影響()A.提高分類準確性B.降低分類準確性C.對性能沒有影響D.可能提高也可能降低準確性,取決于數(shù)據(jù)20、在一個異常檢測的任務中,數(shù)據(jù)分布呈現(xiàn)多峰且存在離群點。以下哪種異常檢測算法可能表現(xiàn)較好?()A.基于密度的局部異常因子(LOF)算法,能夠發(fā)現(xiàn)局部密度差異較大的異常點,但對參數(shù)敏感B.一類支持向量機(One-ClassSVM),適用于高維數(shù)據(jù),但對數(shù)據(jù)分布的假設較強C.基于聚類的異常檢測,將遠離聚類中心的點視為異常,但聚類效果對結果影響較大D.以上算法結合使用,根據(jù)數(shù)據(jù)特點選擇合適的方法或進行組合二、簡答題(本大題共5個小題,共25分)1、(本題5分)簡述機器學習中的集成學習方法。2、(本題5分)談談局部線性嵌入(LLE)在降維中的應用。3、(本題5分)解釋如何使用機器學習進行滑坡預測。4、(本題5分)機器學習中梯度提升樹(GBDT)的特點是什么?5、(本題5分)簡述機器學習在電商中的客戶行為分析。三、應用題(本大題共5個小題,共25分)1、(本題5分)通過主成分分析對音頻數(shù)據(jù)進行降維。2、(本題5分)使用決策樹算法對用戶的健康狀況進行評估。3、(本題5分)利用口腔正畸學數(shù)據(jù)設計正畸治療方案。4、(本題5分)通過神經網絡模型對腦電圖(EEG)中的異常進行檢測。5、(本題5分)運用LSTM網絡對電商平臺的用戶流失率進行預測。四、論述題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論