2025屆山東省濟寧市兗州區(qū)高考數學四模試卷含解析_第1頁
2025屆山東省濟寧市兗州區(qū)高考數學四模試卷含解析_第2頁
2025屆山東省濟寧市兗州區(qū)高考數學四模試卷含解析_第3頁
2025屆山東省濟寧市兗州區(qū)高考數學四模試卷含解析_第4頁
2025屆山東省濟寧市兗州區(qū)高考數學四模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆山東省濟寧市兗州區(qū)高考數學四模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如果實數滿足條件,那么的最大值為()A. B. C. D.2.從集合中隨機選取一個數記為,從集合中隨機選取一個數記為,則在方程表示雙曲線的條件下,方程表示焦點在軸上的雙曲線的概率為()A. B. C. D.3.已知函數,,若對任意,總存在,使得成立,則實數的取值范圍為()A. B.C. D.4.已知函數()的最小值為0,則()A. B. C. D.5.已知函數,,其中為自然對數的底數,若存在實數,使成立,則實數的值為()A. B. C. D.6.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則7.設為等差數列的前項和,若,則A. B.C. D.8.空間點到平面的距離定義如下:過空間一點作平面的垂線,這個點和垂足之間的距離叫做這個點到這個平面的距離.已知平面,,兩兩互相垂直,點,點到,的距離都是3,點是上的動點,滿足到的距離與到點的距離相等,則點的軌跡上的點到的距離的最小值是()A. B.3 C. D.9.已知函數的定義域為,則函數的定義域為()A. B.C. D.10.過圓外一點引圓的兩條切線,則經過兩切點的直線方程是().A. B. C. D.11.如圖是二次函數的部分圖象,則函數的零點所在的區(qū)間是()A. B. C. D.12.甲、乙、丙、丁四位同學高考之后計劃去三個不同社區(qū)進行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數為()A.8 B.7 C.6 D.5二、填空題:本題共4小題,每小題5分,共20分。13.從甲、乙、丙、丁、戊五人中任選兩名代表,甲被選中的概率為__________.14.在中,內角所對的邊分別為,若,的面積為,則_______,_______.15.數列的前項和為,數列的前項和為,滿足,,且.若任意,成立,則實數的取值范圍為__________.16.“六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數”.某校在周末學生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩講座必須相鄰的不同安排種數為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)討論的單調性;(2)當時,證明:.18.(12分)設橢圓的離心率為,圓與軸正半軸交于點,圓在點處的切線被橢圓截得的弦長為.(1)求橢圓的方程;(2)設圓上任意一點處的切線交橢圓于點,試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由.19.(12分)某精密儀器生產車間每天生產個零件,質檢員小張每天都會隨機地從中抽取50個零件進行檢查是否合格,若較多零件不合格,則需對其余所有零件進行檢查.根據多年的生產數據和經驗,這些零件的長度服從正態(tài)分布(單位:微米),且相互獨立.若零件的長度滿足,則認為該零件是合格的,否則該零件不合格.(1)假設某一天小張抽查出不合格的零件數為,求及的數學期望;(2)小張某天恰好從50個零件中檢查出2個不合格的零件,若以此頻率作為當天生產零件的不合格率.已知檢查一個零件的成本為10元,而每個不合格零件流入市場帶來的損失為260元.假設充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.附:若隨機變量服從正態(tài)分布,則.20.(12分)數列滿足,且.(1)證明:數列是等差數列,并求數列的通項公式;(2)求數列的前項和.21.(12分)若函數在處有極值,且,則稱為函數的“F點”.(1)設函數().①當時,求函數的極值;②若函數存在“F點”,求k的值;(2)已知函數(a,b,,)存在兩個不相等的“F點”,,且,求a的取值范圍.22.(10分)某職稱晉級評定機構對參加某次專業(yè)技術考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失?。畷x級成功晉級失敗合計男16女50合計(1)求圖中的值;(2)根據已知條件完成下面列聯表,并判斷能否有的把握認為“晉級成功”與性別有關?(3)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數為,求的分布列與數學期望.(參考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.024

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

解:當直線過點時,最大,故選B2、A【解析】

設事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,分別計算出,再利用公式計算即可.【詳解】設事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【點睛】本題考查利用定義計算條件概率的問題,涉及到雙曲線的定義,是一道容易題.3、C【解析】

將函數解析式化簡,并求得,根據當時可得的值域;由函數在上單調遞減可得的值域,結合存在性成立問題滿足的集合關系,即可求得的取值范圍.【詳解】依題意,則,當時,,故函數在上單調遞增,當時,;而函數在上單調遞減,故,則只需,故,解得,故實數的取值范圍為.故選:C.【點睛】本題考查了導數在判斷函數單調性中的應用,恒成立與存在性成立問題的綜合應用,屬于中檔題.4、C【解析】

設,計算可得,再結合圖像即可求出答案.【詳解】設,則,則,由于函數的最小值為0,作出函數的大致圖像,結合圖像,,得,所以.故選:C【點睛】本題主要考查了分段函數的圖像與性質,考查轉化思想,考查數形結合思想,屬于中檔題.5、A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數,(﹣1,+∞)上是增函數,故當x=﹣1時,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當且僅當ex﹣a=4ea﹣x,即x=a+ln1時,等號成立);故f(x)﹣g(x)≥3(當且僅當等號同時成立時,等號成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.6、C【解析】

根據線面的位置關系,結合線面平行的判定定理、平行線的性質進行判斷即可.【詳解】A:當時,也可以滿足∥,b∥,故本命題不正確;B:當時,也可以滿足,,故本命題不正確;C:根據平行線的性質可知:當∥,,時,能得到,故本命題是正確的;D:當時,也可以滿足,b∥,故本命題不正確.故選:C【點睛】本題考查了線面的位置關系,考查了平行線的性質,考查了推理論證能力.7、C【解析】

根據等差數列的性質可得,即,所以,故選C.8、D【解析】

建立平面直角坐標系,將問題轉化為點的軌跡上的點到軸的距離的最小值,利用到軸的距離等于到點的距離得到點軌跡方程,得到,進而得到所求最小值.【詳解】如圖,原題等價于在直角坐標系中,點,是第一象限內的動點,滿足到軸的距離等于點到點的距離,求點的軌跡上的點到軸的距離的最小值.設,則,化簡得:,則,解得:,即點的軌跡上的點到的距離的最小值是.故選:.【點睛】本題考查立體幾何中點面距離最值的求解,關鍵是能夠準確求得動點軌跡方程,進而根據軌跡方程構造不等關系求得最值.9、A【解析】試題分析:由題意,得,解得,故選A.考點:函數的定義域.10、A【解析】過圓外一點,引圓的兩條切線,則經過兩切點的直線方程為,故選.11、B【解析】

根據二次函數圖象的對稱軸得出范圍,軸截距,求出的范圍,判斷在區(qū)間端點函數值正負,即可求出結論.【詳解】∵,結合函數的圖象可知,二次函數的對稱軸為,,,∵,所以在上單調遞增.又因為,所以函數的零點所在的區(qū)間是.故選:B.【點睛】本題考查二次函數的圖象及函數的零點,屬于基礎題.12、B【解析】根據題意滿足條件的安排為:A(甲,乙)B(丙)C(丁);A(甲,乙)B(?。〤(丙);A(甲,丙)B(丁)C(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,?。〤(乙);A(甲)B(?。〤(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,根據公式即可求得概率.【詳解】甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,.故答案為:.【點睛】本題考查古典概型的概率的計算,考查學生分析問題的能力,難度容易.14、【解析】

由已知及正弦定理,三角函數恒等變換的應用可得,從而求得,結合范圍,即可得到答案運用余弦定理和三角形面積公式,結合完全平方公式,即可得到答案【詳解】由已知及正弦定理可得,可得:解得,即,由面積公式可得:,即由余弦定理可得:即有解得【點睛】本題主要考查了運用正弦定理、余弦定理和面積公式解三角形,題目較為基礎,只要按照題意運用公式即可求出答案15、【解析】

當時,,可得到,再用累乘法求出,再求出,根據定義求出,再借助單調性求解.【詳解】解:當時,,則,,當時,,,,,,(當且僅當時等號成立),,故答案為:.【點睛】本題主要考查已知求,累乘法,主要考查計算能力,屬于中檔題.16、【解析】

分步排課,首先將“禮”與“樂”排在前兩節(jié),然后,“射”和“御”捆綁一一起作為一個元素與其它兩個元素合起來全排列,同時它們內部也全排列.【詳解】第一步:先將“禮”與“樂”排在前兩節(jié),有種不同的排法;第二步:將“射”和“御”兩節(jié)講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩節(jié)講座必須相鄰的不同安排種數為.故答案為:1.【點睛】本題考查排列的應用,排列組合問題中,遵循特殊元素特殊位置優(yōu)先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】

(1)求導得,分類討論和,利用導數研究含參數的函數單調性;(2)根據(1)中求得的的單調性,得出在處取得最大值為,構造函數,利用導數,推出,即可證明不等式.【詳解】解:(1)由于,得,當時,,此時在上遞增;當時,由,解得,若,則,若,,此時在遞增,在上遞減.(2)由(1)知在處取得最大值為:,設,則,令,則,則在單調遞減,∴,即,則在單調遞減∴,∴,∴.【點睛】本題考查利用導數研究函數的單調性和最值,涉及分類討論和構造新函數,通過導數證明不等式,考查轉化思想和計算能力.18、(1);(2)見解析.【解析】

(I)結合離心率,得到a,b,c的關系,計算A的坐標,計算切線與橢圓交點坐標,代入橢圓方程,計算參數,即可.(II)分切線斜率存在與不存在討論,設出M,N的坐標,設出切線方程,結合圓心到切線距離公式,得到m,k的關系式,將直線方程代入橢圓方程,利用根與系數關系,表示,結合三角形相似,證明結論,即可.【詳解】(Ⅰ)設橢圓的半焦距為,由橢圓的離心率為知,,∴橢圓的方程可設為.易求得,∴點在橢圓上,∴,解得,∴橢圓的方程為.(Ⅱ)當過點且與圓相切的切線斜率不存在時,不妨設切線方程為,由(Ⅰ)知,,,∴.當過點且與圓相切的切線斜率存在時,可設切線的方程為,,∴,即.聯立直線和橢圓的方程得,∴,得.∵,∴,,∴.綜上所述,圓上任意一點處的切線交橢圓于點,都有.在中,由與相似得,為定值.【點睛】本道題考查了橢圓方程的求解,考查了直線與橢圓位置關系,考查了向量的坐標運算,難度偏難.19、(1)見解析(2)需要,見解析【解析】

(1)由零件的長度服從正態(tài)分布且相互獨立,零件的長度滿足即為合格,則每一個零件的長度合格的概率為,滿足二項分布,利用補集的思想求得,再根據公式求得;(2)由題可得不合格率為,檢查的成本為,求出不檢查時損失的期望,與成本作差,再與0比較大小即可判斷.【詳解】(1),由于滿足二項分布,故.(2)由題意可知不合格率為,若不檢查,損失的期望為;若檢查,成本為,由于,當充分大時,,所以為了使損失盡量小,小張需要檢查其余所有零件.【點睛】本題考查正態(tài)分布的應用,考查二項分布的期望,考查補集思想的應用,考查分析能力與數據處理能力.20、(1)證明見解析,;(2)【解析】

(1)利用,推出,然后利用等差數列的通項公式,即可求解;(2)由(1)知,利用裂項法,即可求解數列的前n項和.【詳解】(1)由題意,數列滿足且可得,即,所以數列是公差,首項的等差數列,故,所以.(2)由(1)知,所以數列的前n項和:==【點睛】本題主要考查了等差數列的通項公式,以及“裂項法”求解數列的前n項和,其中解答中熟記等差數列的定義和通項公式,合理利用“裂項法”求和是解答的關鍵,著重考查了推理與運算能力.21、(1)①極小值為1,無極大值.②實數k的值為1.(2)【解析】

(1)①將代入可得,求導討論函數單調性,即得極值;②設是函數的一個“F點”(),即是的零點,那么由導數可知,且,可得,根據可得,設,由的單調性可得,即得.(2)方法一:先求的導數,存在兩個不相等的“F點”,,可以由和韋達定理表示出,的關系,再由,可得的關系式,根據已知解即得.方法二:由函數存在不相等的兩個“F點”和,可知,是關于x的方程組的兩個相異實數根,由得,分兩種情況:是函數一個“F點”,不是函數一個“F點”,進行討論即得.【詳解】解:(1)①當時,(),則有(),令得,列表如下:x10極小值故函數在處取得極小值,極小值為1,無極大值.②設是函數的一個“F點”().(),是函數的零點.,由,得,,由,得,即.設,則,所以函數在上單調增,注意到,所以方程存在唯一實根1,所以,得,根據①知,時,是函數的極小值點,所以1是函數的“F點”.綜上,得實數k的值為1.(2)由(a,b,,),可得().又函數存在不相等的兩個“F點”和,,是關于x的方程()的兩個相異實數根.又,,,即,從而,,即..,,解得.所以,實數a的取值范圍為.(2)(解法2)因為(a,b,,)所以().又因為函數存在不相等的兩個“F點”和,所以,是關于x的方程組的兩個相異實數根.由得,.(2.1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論