2025屆重慶西南大學(xué)附屬中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2025屆重慶西南大學(xué)附屬中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2025屆重慶西南大學(xué)附屬中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2025屆重慶西南大學(xué)附屬中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2025屆重慶西南大學(xué)附屬中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆重慶西南大學(xué)附屬中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件2.已知雙曲線,為坐標原點,、為其左、右焦點,點在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.3.如圖1,《九章算術(shù)》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現(xiàn)被風(fēng)折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.4.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結(jié)果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結(jié)論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無法確定誰被錄用了5.已知拋物線的焦點為,若拋物線上的點關(guān)于直線對稱的點恰好在射線上,則直線被截得的弦長為()A. B. C. D.6.已知函數(shù),為的零點,為圖象的對稱軸,且在區(qū)間上單調(diào),則的最大值是()A. B. C. D.7.若復(fù)數(shù)滿足,則的虛部為()A.5 B. C. D.-58.空間點到平面的距離定義如下:過空間一點作平面的垂線,這個點和垂足之間的距離叫做這個點到這個平面的距離.已知平面,,兩兩互相垂直,點,點到,的距離都是3,點是上的動點,滿足到的距離與到點的距離相等,則點的軌跡上的點到的距離的最小值是()A. B.3 C. D.9.若復(fù)數(shù),則()A. B. C. D.2010.在明代程大位所著的《算法統(tǒng)宗》中有這樣一首歌謠,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.”請問各畜賠多少?它的大意是放牧人放牧?xí)r粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1斗=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問羊、馬、牛的主人應(yīng)該分別向青苗主人賠償多少升糧食?()A. B. C. D.11.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個發(fā)彩色光的小燈泡且在背面用導(dǎo)線相連(弧的兩端各一個,導(dǎo)線接頭忽略不計),已知扇形的半徑為30厘米,則連接導(dǎo)線最小大致需要的長度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米12.如圖,正四面體的體積為,底面積為,是高的中點,過的平面與棱、、分別交于、、,設(shè)三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.已知定義在上的函數(shù)的圖象關(guān)于點對稱,,若函數(shù)圖象與函數(shù)圖象的交點為,則_____.14.春天即將來臨,某學(xué)校開展以“擁抱春天,播種綠色”為主題的植物種植實踐體驗活動.已知某種盆栽植物每株成活的概率為,各株是否成活相互獨立.該學(xué)校的某班隨機領(lǐng)養(yǎng)了此種盆栽植物10株,設(shè)為其中成活的株數(shù),若的方差,,則________.15.近年來,新能源汽車技術(shù)不斷推陳出新,新產(chǎn)品不斷涌現(xiàn),在汽車市場上影響力不斷增大.動力蓄電池技術(shù)作為新能源汽車的核心技術(shù),它的不斷成熟也是推動新能源汽車發(fā)展的主要動力.假定現(xiàn)在市售的某款新能源汽車上,車載動力蓄電池充放電循環(huán)次數(shù)達到2000次的概率為85%,充放電循環(huán)次數(shù)達到2500次的概率為35%.若某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電,那么他的車能夠充電2500次的概率為______.16.已知向量,,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,空間幾何體中,是邊長為2的等邊三角形,,,,平面平面,且平面平面,為中點.(1)證明:平面;(2)求二面角平面角的余弦值.18.(12分)設(shè),,其中.(1)當時,求的值;(2)對,證明:恒為定值.19.(12分)如圖,在平面直角坐標系xOy中,已知橢圓的離心率為,且過點.為橢圓的右焦點,為橢圓上關(guān)于原點對稱的兩點,連接分別交橢圓于兩點.⑴求橢圓的標準方程;⑵若,求的值;⑶設(shè)直線,的斜率分別為,,是否存在實數(shù),使得,若存在,求出的值;若不存在,請說明理由.20.(12分)在中,角的對邊分別為,且.(1)求角的大??;(2)已知外接圓半徑,求的周長.21.(12分)在平面四邊形(圖①)中,與均為直角三角形且有公共斜邊,設(shè),∠,∠,將沿折起,構(gòu)成如圖②所示的三棱錐,且使=.(1)求證:平面⊥平面;(2)求二面角的余弦值.22.(10分)已知函數(shù),其導(dǎo)函數(shù)為,(1)若,求不等式的解集;(2)證明:對任意的,恒有.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

先求出滿足的值,然后根據(jù)充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.【點睛】本題考查充分必要條件,掌握充分必要條件的定義是解題基礎(chǔ).解題時可根據(jù)條件與結(jié)論中參數(shù)的取值范圍進行判斷.2、D【解析】

根據(jù),先確定出的長度,然后利用雙曲線定義將轉(zhuǎn)化為的關(guān)系式,化簡后可得到的值,即可求漸近線方程.【詳解】如圖所示:因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【點睛】本題考查根據(jù)雙曲線中的長度關(guān)系求解漸近線方程,難度一般.注意雙曲線的焦點到漸近線的距離等于虛軸長度的一半.3、B【解析】如圖,已知,,

∴,解得

,∴,解得

.∴折斷后的竹干高為4.55尺故選B.4、C【解析】

假設(shè)若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點睛】本題考查了邏輯推理能力,屬基礎(chǔ)題.5、B【解析】

由焦點得拋物線方程,設(shè)點的坐標為,根據(jù)對稱可求出點的坐標,寫出直線方程,聯(lián)立拋物線求交點,計算弦長即可.【詳解】拋物線的焦點為,則,即,設(shè)點的坐標為,點的坐標為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設(shè)直線與拋物線的另一個交點為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點睛】本題主要考查了拋物線的標準方程,簡單幾何性質(zhì),點關(guān)于直線對稱,屬于中檔題.6、B【解析】

由題意可得,且,故有①,再根據(jù),求得②,由①②可得的最大值,檢驗的這個值滿足條件.【詳解】解:函數(shù),,為的零點,為圖象的對稱軸,,且,、,,即為奇數(shù)①.在,單調(diào),,②.由①②可得的最大值為1.當時,由為圖象的對稱軸,可得,,故有,,滿足為的零點,同時也滿足滿足在上單調(diào),故為的最大值,故選:B.【點睛】本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性以及它的圖象的對稱性,屬于中檔題.7、C【解析】

把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.8、D【解析】

建立平面直角坐標系,將問題轉(zhuǎn)化為點的軌跡上的點到軸的距離的最小值,利用到軸的距離等于到點的距離得到點軌跡方程,得到,進而得到所求最小值.【詳解】如圖,原題等價于在直角坐標系中,點,是第一象限內(nèi)的動點,滿足到軸的距離等于點到點的距離,求點的軌跡上的點到軸的距離的最小值.設(shè),則,化簡得:,則,解得:,即點的軌跡上的點到的距離的最小值是.故選:.【點睛】本題考查立體幾何中點面距離最值的求解,關(guān)鍵是能夠準確求得動點軌跡方程,進而根據(jù)軌跡方程構(gòu)造不等關(guān)系求得最值.9、B【解析】

化簡得到,再計算模長得到答案.【詳解】,故.故選:.【點睛】本題考查了復(fù)數(shù)的運算,復(fù)數(shù)的模,意在考查學(xué)生的計算能力.10、D【解析】

設(shè)羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,易知成等比數(shù)列,,結(jié)合等比數(shù)列的性質(zhì)可求出答案.【詳解】設(shè)羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,則成等比數(shù)列,且公比,則,故,,.故選:D.【點睛】本題考查數(shù)列與數(shù)學(xué)文化,考查了等比數(shù)列的性質(zhì),考查了學(xué)生的運算求解能力,屬于基礎(chǔ)題.11、B【解析】

由于實際問題中扇形弧長較小,可將導(dǎo)線的長視為扇形弧長,利用弧長公式計算即可.【詳解】因為弧長比較短的情況下分成6等分,所以每部分的弦長和弧長相差很小,可以用弧長近似代替弦長,故導(dǎo)線長度約為63(厘米).故選:B.【點睛】本題主要考查了扇形弧長的計算,屬于容易題.12、A【解析】

設(shè),取與重合時的情況,計算出以及的值,利用排除法可得出正確選項.【詳解】如圖所示,利用排除法,取與重合時的情況.不妨設(shè),延長到,使得.,,,,則,由余弦定理得,,,又,,當平面平面時,,,排除B、D選項;因為,,此時,,當平面平面時,,,排除C選項.故選:A.【點睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計算公式、排除法,考查了空間想象能力、推理能力與計算能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、4038.【解析】

由函數(shù)圖象的對稱性得:函數(shù)圖象與函數(shù)圖象的交點關(guān)于點對稱,則,,即,得解.【詳解】由知:得函數(shù)的圖象關(guān)于點對稱又函數(shù)的圖象關(guān)于點對稱則函數(shù)圖象與函數(shù)圖象的交點關(guān)于點對稱則故,即本題正確結(jié)果:【點睛】本題考查利用函數(shù)圖象的對稱性來求值的問題,關(guān)鍵是能夠根據(jù)函數(shù)解析式判斷出函數(shù)的對稱中心,屬中檔題.14、【解析】

由題意可知:,且,從而可得值.【詳解】由題意可知:∴,即,∴故答案為:【點睛】本題考查二項分布的實際應(yīng)用,考查分析問題解決問題的能力,考查計算能力,屬于中檔題.15、【解析】

記“某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電”為事件A,“他的車能夠充電2500次”為事件B,即求條件概率:,由條件概率公式即得解.【詳解】記“某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電”為事件A,“他的車能夠充電2500次”為事件B,即求條件概率:故答案為:【點睛】本題考查了條件概率的應(yīng)用,考查了學(xué)生概念理解,數(shù)學(xué)應(yīng)用,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.16、3【解析】

由題意得,,再代入中,計算即可得答案.【詳解】由題意可得,,∴,解得,∴.故答案為:.【點睛】本題考查向量模的計算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力,求解時注意向量數(shù)量積公式的運用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)分別取,的中點,,連接,,,,,要證明平面,只需證明面∥面即可.(2)以點為原點,以為軸,以為軸,以為軸,建立空間直角坐標系,分別計算面的法向量,面的法向量可取,并判斷二面角為銳角,再利用計算即可.【詳解】(1)證明:分別取,的中點,,連接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥平面,所以∥平面(2)以點為原點,以為軸,以為軸,以為軸,建立如圖所示空間直角坐標系由面,所以面的法向量可取,點,點,點,,,設(shè)面的法向量,所以,取,二面角的平面角為,則為銳角.所以【點睛】本題考查由面面平行證明線面平行以及向量法求二面角的余弦值,考查學(xué)生的運算能力,在做此類題時,一定要準確寫出點的坐標.18、(1)1(2)1【解析】分析:(1)當時可得,可得.(2)先得到關(guān)系式,累乘可得,從而可得,即為定值.詳解:(1)當時,,又,所以.(2)即,由累乘可得,又,所以.即恒為定值1.點睛:本題考查組合數(shù)的有關(guān)運算,解題時要注意所給出的的定義,并結(jié)合組合數(shù)公式求解.由于運算量較大,解題時要注意運算的準確性,避免出現(xiàn)錯誤.19、(1)(2)(3)【解析】試題分析:(1);(2)由橢圓對稱性,知,所以,此時直線方程為,故.(3)設(shè),則,通過直線和橢圓方程,解得,,所以,即存在.試題解析:(1)設(shè)橢圓方程為,由題意知:解之得:,所以橢圓方程為:(2)若,由橢圓對稱性,知,所以,此時直線方程為,由,得,解得(舍去),故.(3)設(shè),則,直線的方程為,代入橢圓方程,得,因為是該方程的一個解,所以點的橫坐標,又在直線上,所以,同理,點坐標為,,所以,即存在,使得.20、(1)(2)3+3【解析】

(1)利用余弦的二倍角公式和同角三角函數(shù)關(guān)系式化簡整理并結(jié)合范圍0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周長.【詳解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周長a+b+c=3+3.【點睛】本題考查三角函數(shù)恒等變換的應(yīng)用,正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.21、(1)證明見解析;(2)【解析】

(1)取AB的中點O,連接,證得,從而證得C′O⊥平面ABD,再結(jié)合面面垂直的判定定理,即可證得平面⊥平面;(2)以O(shè)為原點,AB,OC所在的直線為y軸,z軸,建立的空間直角坐標系,求得平面和平面的法向量,利用向量的夾角公式,即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論