江蘇卷2025屆高三(最后沖刺)數(shù)學試卷含解析_第1頁
江蘇卷2025屆高三(最后沖刺)數(shù)學試卷含解析_第2頁
江蘇卷2025屆高三(最后沖刺)數(shù)學試卷含解析_第3頁
江蘇卷2025屆高三(最后沖刺)數(shù)學試卷含解析_第4頁
江蘇卷2025屆高三(最后沖刺)數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇卷2025屆高三(最后沖刺)數(shù)學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若,則a的取值范圍為()A. B. C. D.2.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應,全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯誤的是()A.月下旬新增確診人數(shù)呈波動下降趨勢B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)C.月日至月日新增確診人數(shù)波動最大D.我國新型冠狀病毒肺炎累計確診人數(shù)在月日左右達到峰值3.已知集合,則元素個數(shù)為()A.1 B.2 C.3 D.44.等腰直角三角形BCD與等邊三角形ABD中,,,現(xiàn)將沿BD折起,則當直線AD與平面BCD所成角為時,直線AC與平面ABD所成角的正弦值為()A. B. C. D.5.已知是虛數(shù)單位,若,則()A. B.2 C. D.106.已知函數(shù),以下結論正確的個數(shù)為()①當時,函數(shù)的圖象的對稱中心為;②當時,函數(shù)在上為單調遞減函數(shù);③若函數(shù)在上不單調,則;④當時,在上的最大值為1.A.1 B.2 C.3 D.47.已知數(shù)列中,,且當為奇數(shù)時,;當為偶數(shù)時,.則此數(shù)列的前項的和為()A. B. C. D.8.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.9.若復數(shù)滿足(為虛數(shù)單位),則其共軛復數(shù)的虛部為()A. B. C. D.10.2019年10月1日,為了慶祝中華人民共和國成立70周年,小明、小紅、小金三人以國慶為主題各自獨立完成一幅十字繡贈送給當?shù)氐拇逦瘯?,這三幅十字繡分別命名為“鴻福齊天”、“國富民強”、“興國之路”,為了弄清“國富民強”這一作品是誰制作的,村支書對三人進行了問話,得到回復如下:小明說:“鴻福齊天”是我制作的;小紅說:“國富民強”不是小明制作的,就是我制作的;小金說:“興國之路”不是我制作的,若三人的說法有且僅有一人是正確的,則“鴻福齊天”的制作者是()A.小明 B.小紅 C.小金 D.小金或小明11.如圖所示的程序框圖,當其運行結果為31時,則圖中判斷框①處應填入的是()A. B. C. D.12.已知雙曲線:,,為其左、右焦點,直線過右焦點,與雙曲線的右支交于,兩點,且點在軸上方,若,則直線的斜率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左右焦點分別為,過且斜率為的直線交橢圓于,若三角形的面積等于,則該橢圓的離心率為________.14.李明自主創(chuàng)業(yè),在網上經營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網上支付成功后,李明會得到支付款的80%.①當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________.15.設定義域為的函數(shù)滿足,則不等式的解集為__________.16.已知兩個單位向量滿足,則向量與的夾角為_____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù),(1)當,,求不等式的解集;(2)已知,,的最小值為1,求證:.18.(12分)如圖,三棱柱中,平面,,,分別為,的中點.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.19.(12分)在四棱椎中,四邊形為菱形,,,,,,分別為,中點..(1)求證:;(2)求平面與平面所成銳二面角的余弦值.20.(12分)如圖,底面是等腰梯形,,點為的中點,以為邊作正方形,且平面平面.(1)證明:平面平面.(2)求二面角的正弦值.21.(12分)已知是拋物線:的焦點,點在上,到軸的距離比小1.(1)求的方程;(2)設直線與交于另一點,為的中點,點在軸上,.若,求直線的斜率.22.(10分)為了保障全國第四次經濟普查順利進行,國家統(tǒng)計局從東部選擇江蘇,從中部選擇河北、湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū),在普查過程中首先要進行宣傳培訓,然后確定對象,最后入戶登記,由于種種情況可能會導致入戶登記不夠順利,這為正式普查提供了寶貴的試點經驗,在某普查小區(qū),共有50家企事業(yè)單位,150家個體經營戶,普查情況如下表所示:普查對象類別順利不順利合計企事業(yè)單位401050個體經營戶10050150合計14060200(1)寫出選擇5個國家綜合試點地區(qū)采用的抽樣方法;(2)根據(jù)列聯(lián)表判斷是否有的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關”;(3)以該小區(qū)的個體經營戶為樣本,頻率作為概率,從全國個體經營戶中隨機選擇3家作為普查對象,入戶登記順利的對象數(shù)記為,寫出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

求出函數(shù)定義域,在定義域內確定函數(shù)的單調性,利用單調性解不等式.【詳解】由得,在時,是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.【點睛】本題考查函數(shù)的單調性,考查解函數(shù)不等式,解題關鍵是確定函數(shù)的單調性,解題時可先確定函數(shù)定義域,在定義域內求解.2、D【解析】

根據(jù)新增確診曲線的走勢可判斷A選項的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關系可判斷B選項的正誤;根據(jù)月日至月日新增確診曲線的走勢可判斷C選項的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項的正誤.綜合可得出結論.【詳解】對于A選項,由圖象可知,月下旬新增確診人數(shù)呈波動下降趨勢,A選項正確;對于B選項,由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù),B選項正確;對于C選項,由圖象可知,月日至月日新增確診人數(shù)波動最大,C選項正確;對于D選項,在月日及以前,我國新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國新型冠狀病毒肺炎累計確診人數(shù)不在月日左右達到峰值,D選項錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表的應用,考查數(shù)據(jù)處理能力,屬于基礎題.3、B【解析】

作出兩集合所表示的點的圖象,可得選項.【詳解】由題意得,集合A表示以原點為圓心,以2為半徑的圓,集合B表示函數(shù)的圖象上的點,作出兩集合所表示的點的示意圖如下圖所示,得出兩個圖象有兩個交點:點A和點B,所以兩個集合有兩個公共元素,所以元素個數(shù)為2,故選:B.【點睛】本題考查集合的交集運算,關鍵在于作出集合所表示的點的圖象,再運用數(shù)形結合的思想,屬于基礎題.4、A【解析】

設E為BD中點,連接AE、CE,過A作于點O,連接DO,得到即為直線AD與平面BCD所成角的平面角,根據(jù)題中條件求得相應的量,分析得到即為直線AC與平面ABD所成角,進而求得其正弦值,得到結果.【詳解】設E為BD中點,連接AE、CE,由題可知,,所以平面,過A作于點O,連接DO,則平面,所以即為直線AD與平面BCD所成角的平面角,所以,可得,在中可得,又,即點O與點C重合,此時有平面,過C作與點F,又,所以,所以平面,從而角即為直線AC與平面ABD所成角,,故選:A.【點睛】該題考查的是有關平面圖形翻折問題,涉及到的知識點有線面角的正弦值的求解,在解題的過程中,注意空間角的平面角的定義,屬于中檔題目.5、C【解析】

根據(jù)復數(shù)模的性質計算即可.【詳解】因為,所以,,故選:C【點睛】本題主要考查了復數(shù)模的定義及復數(shù)模的性質,屬于容易題.6、C【解析】

逐一分析選項,①根據(jù)函數(shù)的對稱中心判斷;②利用導數(shù)判斷函數(shù)的單調性;③先求函數(shù)的導數(shù),若滿足條件,則極值點必在區(qū)間;④利用導數(shù)求函數(shù)在給定區(qū)間的最值.【詳解】①為奇函數(shù),其圖象的對稱中心為原點,根據(jù)平移知識,函數(shù)的圖象的對稱中心為,正確.②由題意知.因為當時,,又,所以在上恒成立,所以函數(shù)在上為單調遞減函數(shù),正確.③由題意知,當時,,此時在上為增函數(shù),不合題意,故.令,解得.因為在上不單調,所以在上有解,需,解得,正確.④令,得.根據(jù)函數(shù)的單調性,在上的最大值只可能為或.因為,,所以最大值為64,結論錯誤.故選:C【點睛】本題考查利用導數(shù)研究函數(shù)的單調性,極值,最值,意在考查基本的判斷方法,屬于基礎題型.7、A【解析】

根據(jù)分組求和法,利用等差數(shù)列的前項和公式求出前項的奇數(shù)項的和,利用等比數(shù)列的前項和公式求出前項的偶數(shù)項的和,進而可求解.【詳解】當為奇數(shù)時,,則數(shù)列奇數(shù)項是以為首項,以為公差的等差數(shù)列,當為偶數(shù)時,,則數(shù)列中每個偶數(shù)項加是以為首項,以為公比的等比數(shù)列.所以.故選:A【點睛】本題考查了數(shù)列分組求和、等差數(shù)列的前項和公式、等比數(shù)列的前項和公式,需熟記公式,屬于基礎題.8、A【解析】

畫出約束條件的可行域,利用目標函數(shù)的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點處取得最大值,則,即.故選:A【點睛】本題主要考查線性規(guī)劃的應用,利用z的幾何意義,通過數(shù)形結合是解決本題的關鍵.9、D【解析】

由已知等式求出z,再由共軛復數(shù)的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復數(shù)=-1+,虛部為1故選D.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算和共軛復數(shù)的基本概念,屬于基礎題.10、B【解析】

將三個人制作的所有情況列舉出來,再一一論證.【詳解】依題意,三個人制作的所有情況如下所示:123456鴻福齊天小明小明小紅小紅小金小金國富民強小紅小金小金小明小紅小明興國之路小金小紅小明小金小明小紅若小明的說法正確,則均不滿足;若小紅的說法正確,則4滿足;若小金的說法正確,則3滿足.故“鴻福齊天”的制作者是小紅,故選:B.【點睛】本題考查推理與證明,還考查推理論證能力以及分類討論思想,屬于基礎題.11、C【解析】

根據(jù)程序框圖的運行,循環(huán)算出當時,結束運行,總結分析即可得出答案.【詳解】由題可知,程序框圖的運行結果為31,當時,;當時,;當時,;當時,;當時,.此時輸出.故選:C.【點睛】本題考查根據(jù)程序框圖的循環(huán)結構,已知輸出結果求條件框,屬于基礎題.12、D【解析】

由|AF2|=3|BF2|,可得.設直線l的方程x=my+,m>0,設,,即y1=﹣3y2①,聯(lián)立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【詳解】雙曲線C:,F(xiàn)1,F(xiàn)2為左、右焦點,則F2(,0),設直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯(lián)立①②得,聯(lián)立①③得,,即:,,解得:,直線的斜率為,故選D.【點睛】本題考查直線與雙曲線的位置關系,考查韋達定理的運用,考查向量知識,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題得直線的方程為,代入橢圓方程得:,設點,則有,由,且解出,進而求解出離心率.【詳解】由題知,直線的方程為,代入消得:,設點,則有,,而,又,解得:,所以離心率.故答案為:【點睛】本題主要考查了直線與橢圓的位置關系,三角形面積計算與離心率的求解,考查了學生的運算求解能力14、130.15.【解析】

由題意可得顧客需要支付的費用,然后分類討論,將原問題轉化為不等式恒成立的問題可得的最大值.【詳解】(1),顧客一次購買草莓和西瓜各一盒,需要支付元.(2)設顧客一次購買水果的促銷前總價為元,元時,李明得到的金額為,符合要求.元時,有恒成立,即,即元.所以的最大值為.【點睛】本題主要考查不等式的概念與性質?數(shù)學的應用意識?數(shù)學式子變形與運算求解能力,以實際生活為背景,創(chuàng)設問題情境,考查學生身邊的數(shù)學,考查學生的數(shù)學建模素養(yǎng).15、【解析】

根據(jù)條件構造函數(shù)F(x),求函數(shù)的導數(shù),利用函數(shù)的單調性即可得到結論.【詳解】設F(x),則F′(x),∵,∴F′(x)>0,即函數(shù)F(x)在定義域上單調遞增.∵∴,即F(x)<F(2x)∴,即x>1∴不等式的解為故答案為:【點睛】本題主要考查函數(shù)單調性的判斷和應用,根據(jù)條件構造函數(shù)是解決本題的關鍵.16、【解析】

由得,即得解.【詳解】由題意可知,則.解得,所以,向量與的夾角為.故答案為:【點睛】本題主要考查平面向量的數(shù)量積的計算和夾角的計算,意在考查學生對這些知識的理解掌握水平.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或;(2)證明見解析【解析】

(1)將化簡,分類討論即可;(2)由(1)得,,展開后再利用基本不等式即可.【詳解】(1)當時,,所以或或解得或,因此不等式的解集的或(2)根據(jù),當且僅當時,等式成立.【點睛】本題考查絕對值不等式的解法、利用基本不等式證明不等式問題,考查學生基本的計算能力,是一道基礎題.18、(1)詳見解析;(2).【解析】

(1)連接,,則且為的中點,又∵為的中點,∴,又平面,平面,故平面.(2)由平面,得,.以為原點,分別以,,所在直線為軸,軸,軸建立如圖所示的空間直角坐標系,設,則,,,,,.取平面的一個法向量為,由,得:,令,得同理可得平面的一個法向量為∵平面平面,∴解得,得,又,設直線與平面所成角為,則.所以,直線與平面所成角的正弦值是.19、(1)證明見解析;(2).【解析】

(1)證明,得到平面,得到證明.(2)以點為坐標原點,建立如圖所示的空間直角坐標系,平面的一個法向量為,平面的一個法向量為,計算夾角得到答案.【詳解】(1)因為四邊形是菱形,且,所以是等邊三角形,又因為是的中點,所以,又因為,,所以,又,,,所以,又,,所以平面,所以,又因為是菱形,,所以,又,所以平面,所以.(2)由題意結合菱形的性質易知,,,以點為坐標原點,建立如圖所示的空間直角坐標系,則,,,,,設平面的一個法向量為,則:,據(jù)此可得平面的一個法向量為,設平面的一個法向量為,則:,據(jù)此可得平面的一個法向量為,,平面與平面所成銳二面角的余弦值.【點睛】本題考查了線線垂直,二面角,意在考查學生的計算能力和空間想象能力.20、(1)見解析;(2)【解析】

(1)先證明四邊形是菱形,進而可知,然后可得到平面,即可證明平面平面;(2)記AC,BE的交點為O,再取FG的中點P.以O為坐標原點,以射線OB,OC,OP分別為x軸、y軸、z軸的正半軸建立如圖所示的空間直角坐標系,分別求出平面ABF和DBF的法向量,然后由,可求出二面角的余弦值,進而可求出二面角的正弦值.【詳解】(1)證明:因為點為的中點,,所以,因為,所以,所以四邊形是平行四邊形,因為,所以平行四邊形是菱形,所以,因為平面平面,且平面平面,所以平面.因為平面,所以平面平面.(2)記AC,BE的交點為O,再取FG的中點P.由題意可知AC,BE,OP兩兩垂直,故以O為坐標原點,以射線OB,OC,OP分別為x軸、y軸、z軸的正半軸建立如圖所示的空間直角坐標系.因為底面ABCD是等腰梯形,,所以四邊形ABCE是菱形,且,所以,則,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論