版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023屆上海市松江區(qū)市級名校高三1月階段性測試數(shù)學(xué)試題文試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻).若從含有兩個及以上陽爻的卦中任取兩卦,這兩卦的六個爻中都恰有兩個陽爻的概率為()A. B. C. D.2.我國古代數(shù)學(xué)名著《九章算術(shù)》有一問題:“今有鱉臑(biēnaò),下廣五尺,無袤;上袤四尺,無廣;高七尺.問積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺3.已知函數(shù)是奇函數(shù),且,若對,恒成立,則的取值范圍是()A. B. C. D.4.已知是虛數(shù)單位,若,則()A. B.2 C. D.35.木匠師傅對一個圓錐形木件進行加工后得到一個三視圖如圖所示的新木件,則該木件的體積()A. B. C. D.6.過拋物線的焦點且與的對稱軸垂直的直線與交于,兩點,,為的準(zhǔn)線上的一點,則的面積為()A.1 B.2 C.4 D.87.已知函數(shù)的最小正周期為,為了得到函數(shù)的圖象,只要將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度8.已知角的頂點與坐標(biāo)原點重合,始邊與軸的非負半軸重合,若點在角的終邊上,則()A. B. C. D.9.已知為正項等比數(shù)列,是它的前項和,若,且與的等差中項為,則的值是()A.29 B.30 C.31 D.3210.已知,,且是的充分不必要條件,則的取值范圍是()A. B. C. D.11.設(shè),,則()A. B.C. D.12.已知等差數(shù)列的前項和為,,,則()A.25 B.32 C.35 D.40二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件,則的最大值為________.14.如圖,已知圓內(nèi)接四邊形ABCD,其中,,,,則__________.15.若實數(shù)滿足不等式組,則的最小值是___16.,則f(f(2))的值為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,曲線l的參數(shù)方程為(為參數(shù)),以原點O為極點,x軸非負半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為4sin.(1)求曲線C的普通方程;(2)求曲線l和曲線C的公共點的極坐標(biāo).18.(12分)a,b,c分別為△ABC內(nèi)角A,B,C的對邊.已知a=3,,且B=60°.(1)求△ABC的面積;(2)若D,E是BC邊上的三等分點,求.19.(12分)已知在ΔABC中,角A,B,C的對邊分別為a,b,c,且cosB(1)求b的值;(2)若cosB+3sin20.(12分)改革開放40年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調(diào)查.隨機抽取男女駕駛員各50人,進行問卷測評,所得分?jǐn)?shù)的頻率分布直方圖如圖所示.規(guī)定得分在80分以上為交通安全意識強.安全意識強安全意識不強合計男性女性合計(Ⅰ)求的值,并估計該城市駕駛員交通安全意識強的概率;(Ⅱ)已知交通安全意識強的樣本中男女比例為4:1,完成2×2列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關(guān);(Ⅲ)在(Ⅱ)的條件下,從交通安全意識強的駕駛員中隨機抽取2人,求抽到的女性人數(shù)的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.82821.(12分)如圖,在平面直角坐標(biāo)系中,橢圓的離心率為,且過點.求橢圓的方程;已知是橢圓的內(nèi)接三角形,①若點為橢圓的上頂點,原點為的垂心,求線段的長;②若原點為的重心,求原點到直線距離的最小值.22.(10分)古人云:“腹有詩書氣自華.”為響應(yīng)全民閱讀,建設(shè)書香中國,校園讀書活動的熱潮正在興起.某校為統(tǒng)計學(xué)生一周課外讀書的時間,從全校學(xué)生中隨機抽取名學(xué)生進行問卷調(diào)査,統(tǒng)計了他們一周課外讀書時間(單位:)的數(shù)據(jù)如下:一周課外讀書時間/合計頻數(shù)46101214244634頻率0.020.030.050.060.070.120.250.171(1)根據(jù)表格中提供的數(shù)據(jù),求,,的值并估算一周課外讀書時間的中位數(shù).(2)如果讀書時間按,,分組,用分層抽樣的方法從名學(xué)生中抽取20人.①求每層應(yīng)抽取的人數(shù);②若從,中抽出的學(xué)生中再隨機選取2人,求這2人不在同一層的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
基本事件總數(shù)為個,都恰有兩個陽爻包含的基本事件個數(shù)為個,由此求出概率.【詳解】解:由圖可知,含有兩個及以上陽爻的卦有巽、離、兌、乾四卦,取出兩卦的基本事件有(巽,離),(巽,兌),(巽,乾),(離,兌),(離,乾),(兌,乾)共個,其中符合條件的基本事件有(巽,離),(巽,兌),(離,兌)共個,所以,所求的概率.故選:B.【點睛】本題滲透傳統(tǒng)文化,考查概率、計數(shù)原理等基本知識,考查抽象概括能力和應(yīng)用意識,屬于基礎(chǔ)題.2.A【解析】
根據(jù)三視圖得出原幾何體的立體圖是一個三棱錐,將三棱錐補充成一個長方體,此長方體的外接球就是該三棱錐的外接球,由球的表面積公式計算可得選項.【詳解】由三視圖可得,該幾何體是一個如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長方體的外接球,所以為的中點,設(shè)球半徑為,則,所以外接球的表面積,故選:A.【點睛】本題考查求幾何體的外接球的表面積,關(guān)鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.3.A【解析】
先根據(jù)函數(shù)奇偶性求得,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,利用函數(shù)單調(diào)性求解不等式即可.【詳解】因為函數(shù)是奇函數(shù),所以函數(shù)是偶函數(shù).,即,又,所以,.函數(shù)的定義域為,所以,則函數(shù)在上為單調(diào)遞增函數(shù).又在上,,所以為偶函數(shù),且在上單調(diào)遞增.由,可得,對恒成立,則,對恒成立,,得,所以的取值范圍是.故選:A.【點睛】本題考查利用函數(shù)單調(diào)性求解不等式,根據(jù)方程組法求函數(shù)解析式,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,屬壓軸題.4.A【解析】
直接將兩邊同時乘以求出復(fù)數(shù),再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復(fù)數(shù)的運算及其模的求法,是基礎(chǔ)題.5.C【解析】
由三視圖知幾何體是一個從圓錐中截出來的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120°,底面剩余部分的面積為,故幾何體的體積為:.故選C.【點睛】本題考查了三視圖還原幾何體及體積求解問題,考查了學(xué)生空間想象,數(shù)學(xué)運算能力,難度一般.6.C【解析】
設(shè)拋物線的解析式,得焦點為,對稱軸為軸,準(zhǔn)線為,這樣可設(shè)點坐標(biāo)為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設(shè)拋物線的解析式,則焦點為,對稱軸為軸,準(zhǔn)線為,∵直線經(jīng)過拋物線的焦點,,是與的交點,又軸,∴可設(shè)點坐標(biāo)為,代入,解得,又∵點在準(zhǔn)線上,設(shè)過點的的垂線與交于點,,∴.故應(yīng)選C.【點睛】本題考查拋物線的性質(zhì),解題時只要設(shè)出拋物線的標(biāo)準(zhǔn)方程,就能得出點坐標(biāo),從而求得參數(shù)的值.本題難度一般.7.A【解析】
由的最小正周期是,得,即,因此它的圖象向左平移個單位可得到的圖象.故選A.考點:函數(shù)的圖象與性質(zhì).【名師點睛】三角函數(shù)圖象變換方法:8.D【解析】
由題知,又,代入計算可得.【詳解】由題知,又.故選:D【點睛】本題主要考查了三角函數(shù)的定義,誘導(dǎo)公式,二倍角公式的應(yīng)用求值.9.B【解析】
設(shè)正項等比數(shù)列的公比為q,運用等比數(shù)列的通項公式和等差數(shù)列的性質(zhì),求出公比,再由等比數(shù)列的求和公式,計算即可得到所求.【詳解】設(shè)正項等比數(shù)列的公比為q,則a4=16q3,a7=16q6,a4與a7的等差中項為,即有a4+a7=,即16q3+16q6,=,解得q=(負值舍去),則有S5===1.故選C.【點睛】本題考查等比數(shù)列的通項和求和公式的運用,同時考查等差數(shù)列的性質(zhì),考查運算能力,屬于中檔題.10.D【解析】
“是的充分不必要條件”等價于“是的充分不必要條件”,即中變量取值的集合是中變量取值集合的真子集.【詳解】由題意知:可化簡為,,所以中變量取值的集合是中變量取值集合的真子集,所以.【點睛】利用原命題與其逆否命題的等價性,對是的充分不必要條件進行命題轉(zhuǎn)換,使問題易于求解.11.D【解析】
由不等式的性質(zhì)及換底公式即可得解.【詳解】解:因為,,則,且,所以,,又,即,則,即,故選:D.【點睛】本題考查了不等式的性質(zhì)及換底公式,屬基礎(chǔ)題.12.C【解析】
設(shè)出等差數(shù)列的首項和公差,即可根據(jù)題意列出兩個方程,求出通項公式,從而求得.【詳解】設(shè)等差數(shù)列的首項為,公差為,則,解得,∴,即有.故選:C.【點睛】本題主要考查等差數(shù)列的通項公式的求法和應(yīng)用,涉及等差數(shù)列的前項和公式的應(yīng)用,屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)題意,畫出可行域,將目標(biāo)函數(shù)看成可行域內(nèi)的點與原點距離的平方,利用圖象即可求解.【詳解】可行域如圖所示,易知當(dāng),時,的最大值為.故答案為:9.【點睛】本題考查了利用幾何法解決非線性規(guī)劃問題,屬于中檔題.14.【解析】
由題意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【詳解】由圓內(nèi)接四邊形的性質(zhì)可得,.連接BD,在中,有.在中,.所以,則,所以.連接AC,同理可得,所以.所以.故答案為:【點睛】本題考查余弦定理解三角形,同角三角函數(shù)基本關(guān)系,意在考查方程思想,計算能力,屬于中檔題型,本題的關(guān)鍵是熟悉圓內(nèi)接四邊形的性質(zhì),對角互補.15.-1【解析】作出可行域,如圖:由得,由圖可知當(dāng)直線經(jīng)過A點時目標(biāo)函數(shù)取得最小值,A(1,0)所以-1故答案為-116.1【解析】
先求f(1),再根據(jù)f(1)值所在區(qū)間求f(f(1)).【詳解】由題意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案為:1.【點睛】本題考查分段函數(shù)求值,考查對應(yīng)性以及基本求解能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)(2,).【解析】
(1)利用極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式求解.(2)先把兩個方程均化為普通方程,求解公共點的直角坐標(biāo),然后化為極坐標(biāo)即可.【詳解】(1)∵曲線C的極坐標(biāo)方程為,∴,則,即.(2),∴,聯(lián)立可得,(舍)或,公共點(,3),化為極坐標(biāo)(2,).【點睛】本題主要考查極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化及交點的求解,熟記極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式是求解的關(guān)鍵,交點問題一般是統(tǒng)一一種坐標(biāo)形式求解后再進行轉(zhuǎn)化,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).18.(1);(2)【解析】
(1)根據(jù)正弦定理,可得△ABC為直角三角形,然后可計算b,可得結(jié)果.(2)計算,然后根據(jù)余弦定理,可得,利用平方關(guān)系,可得結(jié)果.【詳解】(1)△ABC中,由csinC=asinA+bsinB,利用正弦定理得c2=a2+b2,所以△ABC是直角三角形.又a=3,B=60°,所以;所以△ABC的面積為.(2)設(shè)D靠近點B,則BD=DE=EC=1.,所以所以.【點睛】本題考查正弦定理的應(yīng)用,屬基礎(chǔ)題.19.(1)b=32【解析】試題分析:(1)本問考查解三角形中的的“邊角互化”.由于求b的值,所以可以考慮到根據(jù)余弦定理將cosB,cosC分別用邊表示,再根據(jù)正弦定理可以將sinAsinC轉(zhuǎn)化為ac,于是可以求出b的值;(2)首先根據(jù)sinB+3cosB=2求出角B的值,根據(jù)第(1)問得到的b值,可以運用正弦定理求出ΔABC外接圓半徑R,于是可以將a+c轉(zhuǎn)化為2RsinA+2R試題解析:(1)由cosB應(yīng)用余弦定理,可得a2化簡得2b=3則b=(2)∵cos∴12cos∵B∈(0,π)∴B+π6=法一.∵2R=b則a+c==sin=3=3sin又∵0<A<2π3,法二因為b=32得34又因為ac≤(a+c2)2所以34=(a+c)∴a+c≤3又由三邊關(guān)系定理可知綜上a+c∈(考點:1.正、余弦定理;2.正弦型函數(shù)求值域;3.重要不等式的應(yīng)用.20.(Ⅰ).0.2(Ⅱ)見解析,有的把握認為交通安全意識與性別有關(guān)(Ⅲ)見解析,【解析】
(Ⅰ)直接根據(jù)頻率和為1計算得到答案.(Ⅱ)完善列聯(lián)表,計算,對比臨界值表得到答案.(Ⅲ)的取值為,計算概率得到分布列,計算數(shù)學(xué)期望得到答案.【詳解】(Ⅰ),解得.所以該城市駕駛員交通安全意識強的概率.(Ⅱ)安全意識強安全意識不強合計男性163450女性44650合計2080100,所以有的把握認為交通安全意識與性別有關(guān)(Ⅲ)的取值為所以的分布列為期望.【點睛】本題考查了獨立性檢驗,分布列,數(shù)學(xué)期望,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.21.;①;②.【解析】
根據(jù)題意列出方程組求解即可;①由原點為的垂心可得,軸,設(shè),則,,根據(jù)求出線段的長;②設(shè)中點為,直線與橢圓交于,兩點,為的重心,則,設(shè):,,,則,當(dāng)斜率不存在時,則到直線的距離為1,,由,則,,,得出,根據(jù)求解即可.【詳解】解:設(shè)焦距為,由題意知:,因此,橢圓的方程為:;①由題意知:,故軸,設(shè),則,,,解得:或,,不重合,故,,故;②設(shè)中點為,直線與橢圓交于,兩點,為的重心,則,當(dāng)斜率
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版風(fēng)力發(fā)電場建設(shè)施工合同模板3篇
- 課題申報書:大學(xué)生學(xué)習(xí)成本認知的形成發(fā)展機制與干預(yù)策略研究
- 課題申報書:大數(shù)據(jù)支持城市內(nèi)澇災(zāi)害治理的困境與多部門協(xié)同機制研究
- 2025版林業(yè)資源開發(fā)與林地承包經(jīng)營權(quán)投資合同3篇
- 2024年財產(chǎn)貸款合同抵押版
- 2024年版股權(quán)轉(zhuǎn)讓合同模板及注意事項
- 2024年跨境電商服務(wù)平臺合作協(xié)議
- 2024年離婚法律文件:合同書步驟詳解版B版
- 2025年度二零二五版光伏發(fā)電項目投資回報及還款協(xié)議范本3篇
- 2025至2030年中國方形蛋糕軟盒行業(yè)投資前景及策略咨詢研究報告
- 新《安全生產(chǎn)法》解讀PPT課件
- E車E拍行車記錄儀說明書 - 圖文-
- 人才梯隊-繼任計劃-建設(shè)方案(珍貴)
- WLANAP日常操作維護規(guī)范
- 《健身氣功》(選修)教學(xué)大綱
- 王家?guī)r隧道工程地質(zhì)勘察報告(總結(jié))
- GE公司燃氣輪機組支持軸承結(jié)構(gòu)及性能分析
- 《昆明的雨》優(yōu)質(zhì)課一等獎(課堂PPT)
- 油氣田地面建設(shè)工程ppt課件
- 電動蝶閥安裝步驟說明
- 全自動電鍍流水線操作說明書(共12頁)
評論
0/150
提交評論