2024屆上海外國(guó)語(yǔ)大學(xué)附屬浦東外國(guó)語(yǔ)學(xué)校高三期中考試數(shù)學(xué)試題試卷數(shù)學(xué)試題_第1頁(yè)
2024屆上海外國(guó)語(yǔ)大學(xué)附屬浦東外國(guó)語(yǔ)學(xué)校高三期中考試數(shù)學(xué)試題試卷數(shù)學(xué)試題_第2頁(yè)
2024屆上海外國(guó)語(yǔ)大學(xué)附屬浦東外國(guó)語(yǔ)學(xué)校高三期中考試數(shù)學(xué)試題試卷數(shù)學(xué)試題_第3頁(yè)
2024屆上海外國(guó)語(yǔ)大學(xué)附屬浦東外國(guó)語(yǔ)學(xué)校高三期中考試數(shù)學(xué)試題試卷數(shù)學(xué)試題_第4頁(yè)
2024屆上海外國(guó)語(yǔ)大學(xué)附屬浦東外國(guó)語(yǔ)學(xué)校高三期中考試數(shù)學(xué)試題試卷數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023屆上海外國(guó)語(yǔ)大學(xué)附屬浦東外國(guó)語(yǔ)學(xué)校高三期中考試數(shù)學(xué)試題試卷數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知斜率為2的直線l過(guò)拋物線C:的焦點(diǎn)F,且與拋物線交于A,B兩點(diǎn),若線段AB的中點(diǎn)M的縱坐標(biāo)為1,則p=()A.1 B. C.2 D.42.下列說(shuō)法正確的是()A.“若,則”的否命題是“若,則”B.在中,“”是“”成立的必要不充分條件C.“若,則”是真命題D.存在,使得成立3.已知集合,則()A. B. C. D.4.已知實(shí)數(shù),滿(mǎn)足,則的最大值等于()A.2 B. C.4 D.85.的展開(kāi)式中,含項(xiàng)的系數(shù)為()A. B. C. D.6.如圖,在矩形中的曲線分別是,的一部分,,,在矩形內(nèi)隨機(jī)取一點(diǎn),若此點(diǎn)取自陰影部分的概率為,取自非陰影部分的概率為,則()A. B. C. D.大小關(guān)系不能確定7.馬林●梅森是17世紀(jì)法國(guó)著名的數(shù)學(xué)家和修道士,也是當(dāng)時(shí)歐洲科學(xué)界一位獨(dú)特的中心人物,梅森在歐幾里得、費(fèi)馬等人研究的基礎(chǔ)上對(duì)2p﹣1作了大量的計(jì)算、驗(yàn)證工作,人們?yōu)榱思o(jì)念梅森在數(shù)論方面的這一貢獻(xiàn),將形如2P﹣1(其中p是素?cái)?shù))的素?cái)?shù),稱(chēng)為梅森素?cái)?shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是()A.3 B.4 C.5 D.68.設(shè)i為虛數(shù)單位,若復(fù)數(shù),則復(fù)數(shù)z等于()A. B. C. D.09.已知函數(shù),將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于軸對(duì)稱(chēng),則的最小值是()A. B. C. D.10.已知函數(shù)的值域?yàn)?,函?shù),則的圖象的對(duì)稱(chēng)中心為()A. B.C. D.11.已知拋物線y2=4x的焦點(diǎn)為F,拋物線上任意一點(diǎn)P,且PQ⊥y軸交y軸于點(diǎn)Q,則的最小值為()A. B. C.l D.112.已知函數(shù),則函數(shù)的零點(diǎn)所在區(qū)間為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.定義在封閉的平面區(qū)域內(nèi)任意兩點(diǎn)的距離的最大值稱(chēng)為平面區(qū)域的“直徑”.已知銳角三角形的三個(gè)點(diǎn),,,在半徑為的圓上,且,分別以各邊為直徑向外作三個(gè)半圓,這三個(gè)半圓和構(gòu)成平面區(qū)域,則平面區(qū)域的“直徑”的最大值是__________.14.函數(shù)的定義域是__________.15.如圖,機(jī)器人亮亮沿著單位網(wǎng)格,從地移動(dòng)到地,每次只移動(dòng)一個(gè)單位長(zhǎng)度,則亮亮從移動(dòng)到最近的走法共有____種.16.在一塊土地上種植某種農(nóng)作物,連續(xù)5年的產(chǎn)量(單位:噸)分別為9.4,9.7,9.8,10.3,10.8.則該農(nóng)作物的年平均產(chǎn)量是______噸.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知拋物線:()的焦點(diǎn)到點(diǎn)的距離為.(1)求拋物線的方程;(2)過(guò)點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,,點(diǎn)、分別在第一和第二象限內(nèi),求的面積.18.(12分)如圖,在四棱錐中,底面為菱形,底面,.(1)求證:平面;(2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.19.(12分)的內(nèi)角,,的對(duì)邊分別是,,,已知.(1)求角;(2)若,,求的面積.20.(12分)已知矩陣的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.21.(12分)如圖所示,在四棱錐中,∥,,點(diǎn)分別為的中點(diǎn).(1)證明:∥面;(2)若,且,面面,求二面角的余弦值.22.(10分)設(shè)的內(nèi)角、、的對(duì)邊長(zhǎng)分別為、、.設(shè)為的面積,滿(mǎn)足.(1)求;(2)若,求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

設(shè)直線l的方程為x=y(tǒng),與拋物線聯(lián)立利用韋達(dá)定理可得p.【詳解】由已知得F(,0),設(shè)直線l的方程為x=y(tǒng),并與y2=2px聯(lián)立得y2﹣py﹣p2=0,設(shè)A(x1,y1),B(x2,y2),AB的中點(diǎn)C(x0,y0),∴y1+y2=p,又線段AB的中點(diǎn)M的縱坐標(biāo)為1,則y0(y1+y2)=,所以p=2,故選C.【點(diǎn)睛】本題主要考查了直線與拋物線的相交弦問(wèn)題,利用韋達(dá)定理是解題的關(guān)鍵,屬中檔題.2.C【解析】

A:否命題既否條件又否結(jié)論,故A錯(cuò).B:由正弦定理和邊角關(guān)系可判斷B錯(cuò).C:可判斷其逆否命題的真假,C正確.D:根據(jù)冪函數(shù)的性質(zhì)判斷D錯(cuò).【詳解】解:A:“若,則”的否命題是“若,則”,故A錯(cuò).B:在中,,故“”是“”成立的必要充分條件,故B錯(cuò).C:“若,則”“若,則”,故C正確.D:由冪函數(shù)在遞減,故D錯(cuò).故選:C【點(diǎn)睛】考查判斷命題的真假,是基礎(chǔ)題.3.C【解析】

解不等式得出集合A,根據(jù)交集的定義寫(xiě)出A∩B.【詳解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故選C.【點(diǎn)睛】本題考查了解不等式與交集的運(yùn)算問(wèn)題,是基礎(chǔ)題.4.D【解析】

畫(huà)出可行域,計(jì)算出原點(diǎn)到可行域上的點(diǎn)的最大距離,由此求得的最大值.【詳解】畫(huà)出可行域如下圖所示,其中,由于,,所以,所以原點(diǎn)到可行域上的點(diǎn)的最大距離為.所以的最大值為.故選:D【點(diǎn)睛】本小題主要考查根據(jù)可行域求非線性目標(biāo)函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.5.B【解析】

在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令的冪指數(shù)等于,求出的值,即可求得含項(xiàng)的系數(shù).【詳解】的展開(kāi)式通項(xiàng)為,令,得,可得含項(xiàng)的系數(shù)為.故選:B.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.6.B【解析】

先用定積分求得陰影部分一半的面積,再根據(jù)幾何概型概率公式可求得.【詳解】根據(jù)題意,陰影部分的面積的一半為:,于是此點(diǎn)取自陰影部分的概率為.又,故.故選B.【點(diǎn)睛】本題考查了幾何概型,定積分的計(jì)算以及幾何意義,屬于中檔題.7.C【解析】

模擬程序的運(yùn)行即可求出答案.【詳解】解:模擬程序的運(yùn)行,可得:p=1,S=1,輸出S的值為1,滿(mǎn)足條件p≤7,執(zhí)行循環(huán)體,p=3,S=7,輸出S的值為7,滿(mǎn)足條件p≤7,執(zhí)行循環(huán)體,p=5,S=31,輸出S的值為31,滿(mǎn)足條件p≤7,執(zhí)行循環(huán)體,p=7,S=127,輸出S的值為127,滿(mǎn)足條件p≤7,執(zhí)行循環(huán)體,p=9,S=511,輸出S的值為511,此時(shí),不滿(mǎn)足條件p≤7,退出循環(huán),結(jié)束,故若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是5,故選:C.【點(diǎn)睛】本題主要考查程序框圖,屬于基礎(chǔ)題.8.B【解析】

根據(jù)復(fù)數(shù)除法的運(yùn)算法則,即可求解.【詳解】.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)運(yùn)算,屬于基礎(chǔ)題.9.A【解析】

化簡(jiǎn)為,求出它的圖象向左平移個(gè)單位長(zhǎng)度后的圖象的函數(shù)表達(dá)式,利用所得到的圖象關(guān)于軸對(duì)稱(chēng)列方程即可求得,問(wèn)題得解?!驹斀狻亢瘮?shù)可化為:,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象,又所得到的圖象關(guān)于軸對(duì)稱(chēng),所以,解得:,即:,又,所以.故選:A.【點(diǎn)睛】本題主要考查了兩角和的正弦公式及三角函數(shù)圖象的平移、性質(zhì)等知識(shí),考查轉(zhuǎn)化能力,屬于中檔題。10.B【解析】

由值域?yàn)榇_定的值,得,利用對(duì)稱(chēng)中心列方程求解即可【詳解】因?yàn)?,又依題意知的值域?yàn)?,所以得,,所以,令,得,則的圖象的對(duì)稱(chēng)中心為.故選:B【點(diǎn)睛】本題考查三角函數(shù)的圖像及性質(zhì),考查函數(shù)的對(duì)稱(chēng)中心,重點(diǎn)考查值域的求解,易錯(cuò)點(diǎn)是對(duì)稱(chēng)中心縱坐標(biāo)錯(cuò)寫(xiě)為011.A【解析】

設(shè)點(diǎn),則點(diǎn),,利用向量數(shù)量積的坐標(biāo)運(yùn)算可得,利用二次函數(shù)的性質(zhì)可得最值.【詳解】解:設(shè)點(diǎn),則點(diǎn),,,,當(dāng)時(shí),取最小值,最小值為.故選:A.【點(diǎn)睛】本題考查拋物線背景下的向量的坐標(biāo)運(yùn)算,考查學(xué)生的計(jì)算能力,是基礎(chǔ)題.12.A【解析】

首先求得時(shí),的取值范圍.然后求得時(shí),的單調(diào)性和零點(diǎn),令,根據(jù)“時(shí),的取值范圍”得到,利用零點(diǎn)存在性定理,求得函數(shù)的零點(diǎn)所在區(qū)間.【詳解】當(dāng)時(shí),.當(dāng)時(shí),為增函數(shù),且,則是唯一零點(diǎn).由于“當(dāng)時(shí),.”,所以令,得,因?yàn)?,,所以函?shù)的零點(diǎn)所在區(qū)間為.故選:A【點(diǎn)睛】本小題主要考查分段函數(shù)的性質(zhì),考查符合函數(shù)零點(diǎn),考查零點(diǎn)存在性定理,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先找到平面區(qū)域內(nèi)任意兩點(diǎn)的最大值為,再利用三角恒等變換化簡(jiǎn)即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點(diǎn)E,AC中點(diǎn)F,BC中點(diǎn)G,如圖所示顯然平面區(qū)域任意兩點(diǎn)距離最大值為,而,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.故答案為:.【點(diǎn)睛】本題考查正弦定理在平面幾何中的應(yīng)用問(wèn)題,涉及到距離的最值問(wèn)題,在處理這類(lèi)問(wèn)題時(shí),一定要數(shù)形結(jié)合,本題屬于中檔題.14.【解析】由,得,所以,所以原函數(shù)定義域?yàn)?,故答案?15.【解析】

分三步來(lái)考查,先從到,再?gòu)牡?,最后從到,分別計(jì)算出三個(gè)步驟中對(duì)應(yīng)的走法種數(shù),然后利用分步乘法計(jì)數(shù)原理可得出結(jié)果.【詳解】分三步來(lái)考查:①?gòu)牡?,則亮亮要移動(dòng)兩步,一步是向右移動(dòng)一個(gè)單位,一步是向上移動(dòng)一個(gè)單位,此時(shí)有種走法;②從到,則亮亮要移動(dòng)六步,其中三步是向右移動(dòng)一個(gè)單位,三步是向上移動(dòng)一個(gè)單位,此時(shí)有種走法;③從到,由①可知有種走法.由分步乘法計(jì)數(shù)原理可知,共有種不同的走法.故答案為:.【點(diǎn)睛】本題考查格點(diǎn)問(wèn)題的處理,考查分步乘法計(jì)數(shù)原理和組合計(jì)數(shù)原理的應(yīng)用,屬于中等題.16.10【解析】

根據(jù)已知數(shù)據(jù)直接計(jì)算即得.【詳解】由題得,.故答案為:10【點(diǎn)睛】本題考查求平均數(shù),是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)【解析】

(1)因?yàn)椋傻?,即可求得答案;?)分別設(shè)、的斜率為和,切點(diǎn),,可得過(guò)點(diǎn)的拋物線的切線方程為:,聯(lián)立直線方程和拋物線方程,得到關(guān)于一元二次方程,根據(jù),求得,,進(jìn)而求得切點(diǎn),坐標(biāo),根據(jù)兩點(diǎn)間距離公式求得,根據(jù)點(diǎn)到直線距離公式求得點(diǎn)到切線的距離,進(jìn)而求得的面積.【詳解】(1),,解得,拋物線的方程為.(2)由題意可知,、的斜率都存在,分別設(shè)為和,切點(diǎn),,過(guò)點(diǎn)的拋物線的切線:,由,消掉,可得,,即,解得,,又由,得,,,同理可得,,,,,切線的方程為,點(diǎn)到切線的距離為,,即的面積為.【點(diǎn)睛】本題主要考查了求拋物線方程和拋物線中三角形面積問(wèn)題,解題關(guān)鍵是掌握拋物線定義和圓錐曲線與直線交點(diǎn)問(wèn)題時(shí),通常用直線和圓錐曲線聯(lián)立方程組,通過(guò)韋達(dá)定理建立起目標(biāo)的關(guān)系式18.(1)證明見(jiàn)解析(2)【解析】

(1)由底面為菱形,得,再由底面,可得,結(jié)合線面垂直的判定可得平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),以所在直線及過(guò)點(diǎn)且垂直于平面的直線分別為軸建立空間直角坐標(biāo)系,分別求出平面與平面的一個(gè)法向量,由兩法向量所成角的余弦值可得平面與平面所成銳二面角的余弦值.【詳解】(1)證明:底面為菱形,,底面,平面,又,平面,平面;(2)解:,,為等邊三角形,.底面,是直線與平面所成的角為,在中,由,解得.如圖,以點(diǎn)為坐標(biāo)原點(diǎn),以所在直線及過(guò)點(diǎn)且垂直于平面的直線分別為軸建立空間直角坐標(biāo)系.則,,,,.,,,.設(shè)平面與平面的一個(gè)法向量分別為,.由,取,得;由,取,得..平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本題考查直線與平面垂直的判定,考查空間想象能力與思維能力,訓(xùn)練了利用空間向量求解空間角,屬于中檔題.19.(1)(2)【解析】

(1)利用余弦定理可求,從而得到的值.(2)利用誘導(dǎo)公式和正弦定理化簡(jiǎn)題設(shè)中的邊角關(guān)系可得,得到值后利用面積公式可求.【詳解】(1)由,得.所以由余弦定理,得.又因?yàn)?,所?(2)由,得.由正弦定理,得,因?yàn)?,所?又因,所以.所以的面積.【點(diǎn)睛】在解三角形中,如果題設(shè)條件是關(guān)于邊的二次形式,我們可以利用余弦定理化簡(jiǎn)該條件,如果題設(shè)條件是關(guān)于邊的齊次式或是關(guān)于內(nèi)角正弦的齊次式,那么我們可以利用正弦定理化簡(jiǎn)該條件,如果題設(shè)條件是邊和角的混合關(guān)系式,那么我們也可把這種關(guān)系式轉(zhuǎn)化為角的關(guān)系式或邊的關(guān)系式.20.另一個(gè)特征值為,對(duì)應(yīng)的一個(gè)特征向量【解析】

根據(jù)特征多項(xiàng)式的一個(gè)零點(diǎn)為3,可得,再回代到方程即可解出另一個(gè)特征值為,最后利用求特征向量的一般步驟,可求出其對(duì)應(yīng)的一個(gè)特征向量.【詳解】矩陣的特征多項(xiàng)式為:,是方程的一個(gè)根,,解得,即方程即,,可得另一個(gè)特征值為:,設(shè)對(duì)應(yīng)的一個(gè)特征向量為:則由,得得,令,則,所以矩陣另一個(gè)特征值為,對(duì)應(yīng)的一個(gè)特征向量【點(diǎn)睛】本題考查了矩陣的特征值以及特征向量,需掌握特征多項(xiàng)式的計(jì)算形式,屬于基礎(chǔ)題.21.(1)證明見(jiàn)解析(2)【解析】

(1)根據(jù)題意,連接交于,連接,利用三角形全等得,進(jìn)而可得結(jié)論;(2)建立空間直角坐標(biāo)系,利用向量求得平面的法向量,進(jìn)而可得二面角的余弦值.【詳解】(1)證明:連接交于,連接,,≌,且,面面,面,(2)取中點(diǎn),連,.由,面面面,又由,以分別為軸建立如圖所示空間直角坐標(biāo)系,設(shè),則,,,,,,為面的一個(gè)法向量,設(shè)面的法向量為,依題意,即,令,解得,所以,平面的法向量,,又因二面角為銳角,故二面角的余弦值為.【點(diǎn)睛】本題考查直線與平面平行的證明,考查

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論