陽泉師范高等??茖W校《計算機視覺技術(shù)》2023-2024學年第一學期期末試卷_第1頁
陽泉師范高等??茖W校《計算機視覺技術(shù)》2023-2024學年第一學期期末試卷_第2頁
陽泉師范高等??茖W?!队嬎銠C視覺技術(shù)》2023-2024學年第一學期期末試卷_第3頁
陽泉師范高等專科學?!队嬎銠C視覺技術(shù)》2023-2024學年第一學期期末試卷_第4頁
陽泉師范高等專科學?!队嬎銠C視覺技術(shù)》2023-2024學年第一學期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

自覺遵守考場紀律如考試作弊此答卷無效密自覺遵守考場紀律如考試作弊此答卷無效密封線第1頁,共3頁陽泉師范高等專科學校

《計算機視覺技術(shù)》2023-2024學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺在文物保護和數(shù)字化中的應(yīng)用可以幫助記錄和分析文物信息。假設(shè)要對一件古老的雕塑進行三維數(shù)字化和表面紋理分析,以下關(guān)于文物保護計算機視覺應(yīng)用的描述,正確的是:()A.傳統(tǒng)的攝影測量方法在文物數(shù)字化中比基于深度學習的方法更精確B.文物的復雜形狀和表面材質(zhì)對數(shù)字化和分析過程沒有挑戰(zhàn)C.結(jié)合多種成像技術(shù)和計算機視覺算法能夠更全面地獲取文物的信息D.文物保護中的計算機視覺應(yīng)用不需要考慮對文物的非接觸性和無損性要求2、在計算機視覺的姿態(tài)估計任務(wù)中,假設(shè)要估計一個物體在三維空間中的姿態(tài),例如估計一個機器人手臂的關(guān)節(jié)角度。以下哪種技術(shù)或方法可能被用于實現(xiàn)這一目標?()A.基于立體視覺的方法,通過多個相機的觀測B.利用深度學習模型直接預測姿態(tài)參數(shù)C.僅根據(jù)物體的外觀形狀進行估計D.隨機猜測物體的姿態(tài)3、計算機視覺中的表情識別用于分析人臉的表情狀態(tài)。假設(shè)要在一個在線教育平臺中檢測學生的學習狀態(tài)。以下關(guān)于表情識別的描述,哪一項是不正確的?()A.可以通過提取面部肌肉的運動特征來判斷表情B.深度學習中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動學習表情的特征表示C.表情識別能夠準確區(qū)分細微的表情變化,如困惑和專注D.表情識別不受面部遮擋和光照變化的影響,始終能夠準確判斷4、目標檢測是計算機視覺中的重要任務(wù)之一。假設(shè)要在一張城市街道的圖像中檢測出所有的行人和車輛,以下關(guān)于目標檢測算法的描述,正確的是:()A.基于傳統(tǒng)的圖像處理方法的目標檢測算法在復雜場景中表現(xiàn)優(yōu)于深度學習算法B.深度學習中的單階段目標檢測算法比兩階段算法速度快,但精度較低C.目標檢測算法只需要關(guān)注目標的位置,不需要考慮目標的類別D.目標檢測的準確率不受圖像質(zhì)量、光照條件和目標大小變化的影響5、計算機視覺中的動作識別是對視頻中人物或物體的動作進行分類和理解。假設(shè)要識別一段舞蹈視頻中的各種舞蹈動作,同時要考慮動作的速度、幅度和風格的變化。以下哪種動作識別方法在處理這種復雜的動作模式時表現(xiàn)更好?()A.基于手工特征的動作識別B.基于時空興趣點的動作識別C.基于深度學習的時空卷積網(wǎng)絡(luò)D.基于隱馬爾可夫模型的動作識別6、計算機視覺中的動作識別旨在識別視頻中的人物動作。假設(shè)我們要對一段包含復雜背景和多人交互的視頻進行動作識別,以下哪種特征表示可能對提高識別準確率有幫助?()A.基于光流的特征B.基于圖像直方圖的特征C.基于像素值的原始特征D.基于圖像邊緣的特征7、在計算機視覺的車牌識別任務(wù)中,假設(shè)要從不同角度和光照條件下拍攝的車輛圖像中準確識別出車牌號碼。以下哪種技術(shù)可能有助于提高識別準確率?()A.字符分割和單獨識別B.利用深度學習模型進行端到端的識別C.只關(guān)注車牌的顏色特征D.隨機猜測車牌號碼8、計算機視覺中的圖像增強技術(shù)可以改善圖像質(zhì)量。假設(shè)要對一張低光照條件下拍攝的圖像進行增強,以下關(guān)于圖像增強方法的描述,正確的是:()A.簡單地增加圖像的亮度就能有效改善低光照圖像的質(zhì)量B.直方圖均衡化方法總是能夠在不引入噪聲的情況下增強圖像對比度C.基于深度學習的圖像增強方法能夠自適應(yīng)地學習到適合的增強策略D.圖像增強不會改變圖像的原始信息和內(nèi)容9、在計算機視覺的人臉識別任務(wù)中,需要應(yīng)對姿態(tài)、表情和光照等變化。假設(shè)要構(gòu)建一個能夠在不同環(huán)境下準確識別人臉的系統(tǒng),以下哪種人臉識別方法在處理這些變化時具有更高的準確性和魯棒性?()A.基于特征點的人臉識別B.基于模板匹配的人臉識別C.基于深度學習的人臉識別D.基于幾何形狀的人臉識別10、在計算機視覺的圖像超分辨率重建中,提高低分辨率圖像的清晰度。假設(shè)要將一張模糊的圖像重建為清晰的高分辨率圖像,以下關(guān)于圖像超分辨率重建方法的描述,哪一項是不正確的?()A.基于插值的方法通過在像素之間插入新的值來增加圖像的分辨率,但可能會導致圖像模糊B.基于深度學習的方法能夠?qū)W習低分辨率圖像和高分辨率圖像之間的映射關(guān)系,重建出更清晰的圖像C.圖像超分辨率重建可以無限制地提高圖像的分辨率,不受原始圖像信息的限制D.為了獲得更好的重建效果,可以結(jié)合多種超分辨率重建方法或使用先驗知識11、在計算機視覺的視頻壓縮中,為了在保證視覺質(zhì)量的同時減少數(shù)據(jù)量,以下哪種技術(shù)可能被廣泛應(yīng)用?()A.運動估計和補償B.圖像分割C.特征點檢測D.邊緣檢測12、計算機視覺在文物保護和修復中的應(yīng)用可以幫助記錄和分析文物的狀態(tài)。假設(shè)要對一件古老的雕塑進行數(shù)字化保存和修復建議。以下關(guān)于計算機視覺在文物保護中的描述,哪一項是錯誤的?()A.可以通過三維掃描技術(shù)獲取文物的精確形狀和表面細節(jié)B.能夠?qū)ξ奈锏念伾图y理進行分析,為修復提供參考C.計算機視覺可以完全替代人工的文物修復工作,保證修復的質(zhì)量和效果D.可以建立文物的數(shù)字檔案,方便后續(xù)的研究和展示13、在計算機視覺的場景理解任務(wù)中,假設(shè)要理解一個室內(nèi)場景的布局和功能,例如判斷是辦公室還是客廳。以下哪種信息對于準確理解場景是至關(guān)重要的?()A.物體的類別和位置B.圖像的顏色分布C.圖像的拍攝角度D.隨機選擇圖像中的部分區(qū)域進行分析14、當進行視頻中的動作識別時,假設(shè)要分析一段運動員訓練的視頻,識別出其中的各種動作,如跑步、跳躍和舉重等。視頻中的動作可能存在速度變化、遮擋和視角變化等問題。為了準確識別這些動作,以下哪種技術(shù)是關(guān)鍵的?()A.對每一幀圖像進行獨立的動作分類,然后綜合結(jié)果B.利用光流信息來捕捉視頻中的運動模式C.只關(guān)注視頻中的關(guān)鍵幀,忽略其他幀D.不考慮視頻的時序信息,將其視為一系列獨立的圖像15、在圖像配準任務(wù)中,需要將不同時間、不同視角或不同傳感器獲取的圖像進行對齊。假設(shè)我們要將一張衛(wèi)星圖像與一張航拍圖像進行配準,以下哪個因素對于配準的準確性影響最大?()A.圖像的分辨率差異B.圖像的旋轉(zhuǎn)和平移C.圖像的光照條件D.圖像中的噪聲二、簡答題(本大題共4個小題,共20分)1、(本題5分)說明計算機視覺在電力設(shè)備巡檢中的應(yīng)用。2、(本題5分)解釋計算機視覺中的遷移學習在圖像識別中的應(yīng)用。3、(本題5分)說明計算機視覺在物流配送優(yōu)化中的作用。4、(本題5分)描述計算機視覺在電力系統(tǒng)中的應(yīng)用。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)運用圖像分類技術(shù),對不同種類的折扇進行分類。2、(本題5分)開發(fā)一個能夠識別不同種類昆蟲幼蟲的計算機視覺系統(tǒng)。3、(本題5分)通過圖像分割技術(shù),將衛(wèi)星圖像中的海洋和陸地生物棲息地進行劃分。4、(本題5分)基于計算機視覺的智能圖書館借還書系統(tǒng),通過圖書封面識別實現(xiàn)自動借還。5、(本題5分)利用深度學習算法,對不同種類的零食圖像進行分類。四、分析題(本大題共4個小題,共40分)1、(本題10分)分析某旅游景區(qū)的官方網(wǎng)站設(shè)計,探討其在界面設(shè)計、內(nèi)容展示、交互功能等方面如何為游客提供全面的旅游信息和服務(wù),吸引游客。2、(本題10分)某科技產(chǎn)品發(fā)布會的邀請函設(shè)計獨具匠心。請研究邀請函在材質(zhì)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論