版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
遼寧省瓦房店高級中學(xué)2025屆高考沖刺模擬數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.要得到函數(shù)的導(dǎo)函數(shù)的圖像,只需將的圖像()A.向右平移個單位長度,再把各點的縱坐標(biāo)伸長到原來的3倍B.向右平移個單位長度,再把各點的縱坐標(biāo)縮短到原來的倍C.向左平移個單位長度,再把各點的縱坐標(biāo)縮短到原來的倍D.向左平移個單位長度,再把各點的縱坐標(biāo)伸長到原來的3倍2.已知函數(shù)在上都存在導(dǎo)函數(shù),對于任意的實數(shù)都有,當(dāng)時,,若,則實數(shù)的取值范圍是()A. B. C. D.3.現(xiàn)有甲、乙、丙、丁4名學(xué)生平均分成兩個志愿者小組到校外參加兩項活動,則乙、丙兩人恰好參加同一項活動的概率為A. B. C. D.4.已知,函數(shù),若函數(shù)恰有三個零點,則()A. B.C. D.5.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數(shù)為()A.1 B.2C.3 D.46.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.7.設(shè)正項等比數(shù)列的前n項和為,若,,則公比()A. B.4 C. D.28.世紀(jì)產(chǎn)生了著名的“”猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果是奇數(shù),則將它乘加,不斷重復(fù)這樣的運算,經(jīng)過有限步后,一定可以得到.如圖是驗證“”猜想的一個程序框圖,若輸入正整數(shù)的值為,則輸出的的值是()A. B. C. D.9.已知等邊△ABC內(nèi)接于圓:x2+y2=1,且P是圓τ上一點,則的最大值是()A. B.1 C. D.210.直線與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.相交或相切11.已知,,則的大小關(guān)系為()A. B. C. D.12.如圖所示,正方體的棱,的中點分別為,,則直線與平面所成角的正弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域是___________.14.高三(1)班共有56人,學(xué)號依次為1,2,3,…,56,現(xiàn)用系統(tǒng)抽樣的辦法抽取一個容量為4的樣本,已知學(xué)號為6,34,48的同學(xué)在樣本中,那么還有一個同學(xué)的學(xué)號應(yīng)為.15.關(guān)于函數(shù)有下列四個命題:①函數(shù)在上是增函數(shù);②函數(shù)的圖象關(guān)于中心對稱;③不存在斜率小于且與函數(shù)的圖象相切的直線;④函數(shù)的導(dǎo)函數(shù)不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號)16.設(shè)等差數(shù)列的前項和為,若,,則數(shù)列的公差________,通項公式________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,(Ⅰ)證明;AC⊥BP;(Ⅱ)求直線AD與平面APC所成角的正弦值.18.(12分)已知函數(shù).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當(dāng)時,求函數(shù)在上最小值.19.(12分)已知橢圓()的離心率為,且經(jīng)過點.(1)求橢圓的方程;(2)過點作直線與橢圓交于不同的兩點,,試問在軸上是否存在定點使得直線與直線恰關(guān)于軸對稱?若存在,求出點的坐標(biāo);若不存在,說明理由.20.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在區(qū)間上的最小值為,求m的值.21.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)求直線的直角坐標(biāo)方程與曲線的普通方程;(Ⅱ)已知點設(shè)直線與曲線相交于兩點,求的值.22.(10分)已知函數(shù).(1)當(dāng)時,解關(guān)于的不等式;(2)若對任意,都存在,使得不等式成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先求得,再根據(jù)三角函數(shù)圖像變換的知識,選出正確選項.【詳解】依題意,所以由向左平移個單位長度,再把各點的縱坐標(biāo)伸長到原來的3倍得到的圖像.故選:D【點睛】本小題主要考查復(fù)合函數(shù)導(dǎo)數(shù)的計算,考查誘導(dǎo)公式,考查三角函數(shù)圖像變換,屬于基礎(chǔ)題.2、B【解析】
先構(gòu)造函數(shù),再利用函數(shù)奇偶性與單調(diào)性化簡不等式,解得結(jié)果.【詳解】令,則當(dāng)時,,又,所以為偶函數(shù),從而等價于,因此選B.【點睛】本題考查利用函數(shù)奇偶性與單調(diào)性求解不等式,考查綜合分析求解能力,屬中檔題.3、B【解析】
求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,利用古典概型及其概率的計算公式,即可求解.【詳解】由題意,現(xiàn)有甲乙丙丁4名學(xué)生平均分成兩個志愿者小組到校外參加兩項活動,基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,所以乙丙兩人恰好參加同一項活動的概率為,故選B.【點睛】本題主要考查了排列組合的應(yīng)用,以及古典概型及其概率的計算問題,其中解答中合理應(yīng)用排列、組合的知識求得基本事件的總數(shù)和所求事件所包含的基本事件的個數(shù),利用古典概型及其概率的計算公式求解是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.4、C【解析】
當(dāng)時,最多一個零點;當(dāng)時,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性畫函數(shù)草圖,根據(jù)草圖可得.【詳解】當(dāng)時,,得;最多一個零點;當(dāng)時,,,當(dāng),即時,,在,上遞增,最多一個零點.不合題意;當(dāng),即時,令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個零點;根據(jù)題意函數(shù)恰有3個零點函數(shù)在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.【點睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數(shù),故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.5、D【解析】可以是共4個,選D.6、B【解析】
由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當(dāng);當(dāng)綜上:.故選:B【點睛】本題考查了條件分支的程序框圖,考查了學(xué)生邏輯推理,分類討論,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.7、D【解析】
由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數(shù)列得,∴,故選:D.【點睛】本題主要考查等比數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.8、C【解析】
列出循環(huán)的每一步,可得出輸出的的值.【詳解】,輸入,,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)不成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,成立,跳出循環(huán),輸出的值為.故選:C.【點睛】本題考查利用程序框圖計算輸出結(jié)果,考查計算能力,屬于基礎(chǔ)題.9、D【解析】
如圖所示建立直角坐標(biāo)系,設(shè),則,計算得到答案.【詳解】如圖所示建立直角坐標(biāo)系,則,,,設(shè),則.當(dāng),即時等號成立.故選:.【點睛】本題考查了向量的計算,建立直角坐標(biāo)系利用坐標(biāo)計算是解題的關(guān)鍵.10、D【解析】
由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結(jié)論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點睛】本題主要考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.11、D【解析】
由指數(shù)函數(shù)的圖像與性質(zhì)易得最小,利用作差法,結(jié)合對數(shù)換底公式及基本不等式的性質(zhì)即可比較和的大小關(guān)系,進而得解.【詳解】根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)可知,由對數(shù)函數(shù)的圖像與性質(zhì)可知,,所以最?。欢蓪?shù)換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點睛】本題考查了指數(shù)式與對數(shù)式的化簡變形,對數(shù)換底公式及基本不等式的簡單應(yīng)用,作差法比較大小,屬于中檔題.12、C【解析】
以D為原點,DA,DC,DD1分別為軸,建立空間直角坐標(biāo)系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,設(shè)正方體ABCD﹣A1B1C1D1的棱長為2,則,,,取平面的法向量為,設(shè)直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【點睛】本題考查了線面角的正弦值的求法,也考查數(shù)形結(jié)合思想和向量法的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由于偶次根式中被開方數(shù)非負(fù),對數(shù)的真數(shù)要大于零,然后解不等式組可得答案.【詳解】解:由題意得,,解得,所以,故答案為:【點睛】此題考查函數(shù)定義域的求法,屬于基礎(chǔ)題.14、20【解析】
根據(jù)系統(tǒng)抽樣的定義將56人按順序分成4組,每組14人,則1至14號為第一組,15至28號為第二組,29號至42號為第三組,43號至56號為第四組.而學(xué)號6,34,48分別是第一、三、四組的學(xué)號,所以還有一個同學(xué)應(yīng)該是15+6-1=20號,故答案為20.15、①②③【解析】
由單調(diào)性、對稱性概念、導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)與極值的關(guān)系進行判斷.【詳解】函數(shù)的定義域是,由于,在上遞增,∴函數(shù)在上是遞增,①正確;,∴函數(shù)的圖象關(guān)于中心對稱,②正確;,時取等號,∴③正確;,設(shè),則,顯然是即的極小值點,④錯誤.故答案為:①②③.【點睛】本題考查函數(shù)的單調(diào)性、對稱性,考查導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)與極值,解題時按照相關(guān)概念判斷即可,屬于中檔題.16、2【解析】
直接利用等差數(shù)列公式計算得到答案.【詳解】,,解得,,故.故答案為:2;.【點睛】本題考查了等差數(shù)列的基本計算,意在考查學(xué)生的計算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ).【解析】
(I)取的中點,連接,通過證明平面得出;(II)以為原點建立坐標(biāo)系,求出平面的法向量,通過計算與的夾角得出與平面所成角.【詳解】(I)證明:取AC的中點M,連接PM,BM,∵AB=BC,PA=PC,∴AC⊥BM,AC⊥PM,又BM∩PM=M,∴AC⊥平面PBM,∵BP?平面PBM,∴AC⊥BP.(II)解:∵底面ABCD是梯形.BC∥AD,AB=BC=CD=1,AD=2,∴∠ABC=120°,∵AB=BC=1,∴AC,BM,∴AC⊥CD,又AC⊥BM,∴BM∥CD.∵PA=PC,CM,∴PM,∵PB,∴cos∠BMP,∴∠PMB=120°,以M為原點,以MB,MC的方向為x軸,y軸的正方向,以平面ABCD在M處的垂線為z軸建立坐標(biāo)系M﹣xyz,如圖所示:則A(0,,0),C(0,,0),P(,0,),D(﹣1,,0),∴(﹣1,,0),(0,,0),(,,),設(shè)平面ACP的法向量為(x,y,z),則,即,令x得(,0,1),∴cos,,∴直線AD與平面APC所成角的正弦值為|cos,|.【點睛】本題考查異面直線垂直的證明,考查直線與平面所成角的正弦值的求法,解題時要認(rèn)真審題,注意向量法的合理使用,難度一般.18、(Ⅰ)見解析;(Ⅱ)當(dāng)時,函數(shù)的最小值是;當(dāng)時,函數(shù)的最小值是【解析】
(1)求出導(dǎo)函數(shù),并且解出它的零點x=,再分區(qū)間討論導(dǎo)數(shù)的正負(fù),即可得到函數(shù)f(x)的單調(diào)區(qū)間;
(2)分三種情況加以討論,結(jié)合函數(shù)的單調(diào)性與函數(shù)值的大小比較,即可得到當(dāng)0<a<ln2時,函數(shù)f(x)的最小值是-a;當(dāng)a≥ln2時,函數(shù)f(x)的最小值是ln2-2a.【詳解】函數(shù)的定義域
為.
因為,令,可得;
當(dāng)時,;當(dāng)時,,綜上所述:可知函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為當(dāng),即時,函數(shù)在區(qū)間上是減函數(shù),
的最小值是當(dāng),即時,函數(shù)在區(qū)間上是增函數(shù),的最小值是當(dāng),即時,函數(shù)在上是增函數(shù),在上是減函數(shù).
又,
當(dāng)時,的最小值是;
當(dāng)時,的最小值為綜上所述,結(jié)論為當(dāng)時,函數(shù)的最小值是;
當(dāng)時,函數(shù)的最小值是.【點睛】求函數(shù)極值與最值的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)解方程求出函數(shù)定義域內(nèi)的所有根;(4)列表檢查在的根左右兩側(cè)值的符號,如果左正右負(fù)(左增右減),那么在處取極大值,如果左負(fù)右正(左減右增),那么在處取極小值.(5)如果只有一個極值點,則在該處即是極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點值的函數(shù)值與極值的大小19、(1)(2)見解析【解析】
(1)由題得a,b,c的方程組求解即可(2)直線與直線恰關(guān)于軸對稱,等價于的斜率互為相反數(shù),即,整理.設(shè)直線的方程為,與橢圓聯(lián)立,將韋達定理代入整理即可.【詳解】(1)由題意可得,,又,解得,.所以,橢圓的方程為(2)存在定點,滿足直線與直線恰關(guān)于軸對稱.設(shè)直線的方程為,與橢圓聯(lián)立,整理得,.設(shè),,定點.(依題意則由韋達定理可得,,.直線與直線恰關(guān)于軸對稱,等價于的斜率互為相反數(shù).所以,,即得.又,,所以,,整理得,.從而可得,,即,所以,當(dāng),即時,直線與直線恰關(guān)于軸對稱成立.特別地,當(dāng)直線為軸時,也符合題意.綜上所述,存在軸上的定點,滿足直線與直線恰關(guān)于軸對稱.【點睛】本題考查橢圓方程,直線與橢圓位置關(guān)系,熟記橢圓方程簡單性質(zhì),熟練轉(zhuǎn)化題目條件,準(zhǔn)確計算是關(guān)鍵,是中檔題.20、(1)見解析(2)【解析】
(1)先求導(dǎo),再對m分類討論,求出的單調(diào)性;(2)對m分三種情況討論求函數(shù)在區(qū)間上的最小值即得解.【詳解】(1)若,當(dāng)時,;當(dāng)時.,所以在上單調(diào)遞增,在上單調(diào)遞減若.在R上單調(diào)遞增若,當(dāng)時,;當(dāng)時.,所以在上單調(diào)遞增,在上單調(diào)遞減(2)由(1)可知,當(dāng)時,在上單
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2022教師考核表個人述職報告范文【7篇】
- 結(jié)算工作總結(jié)模板4篇
- 競聘演講稿(集合15篇)
- 元旦晚會有感心得5篇
- 春天周末經(jīng)典祝福語
- 見習(xí)護士自我鑒定集錦15篇
- 消化工作計劃合集6篇
- 煤礦崗位工作標(biāo)準(zhǔn)
- 廣東省汕頭市潮南井都中學(xué)2024-2025學(xué)年九年級上冊語篇填空與補全對話專項練習(xí)測試卷(含答案)
- 村屯開展環(huán)境整治工作總結(jié)(4篇)
- 2024年安全生產(chǎn)月活動安全知識競賽題庫含答案
- 孕產(chǎn)婦健康管理服務(wù)規(guī)范課件
- 老年社會工作PPT全套教學(xué)課件
- ××市××學(xué)校鞏固中等職業(yè)教育基礎(chǔ)地位專項行動實施方案參考提綱
- 教育培訓(xùn)基地建設(shè)實施計劃方案
- 重力式碼頭工程完整施工組織設(shè)計
- 廟宇重建落成慶典范文(合集7篇)
- 道德與法治-《我也有責(zé)任》觀課報告
- 大學(xué)英語四六級詞匯匯總
- autocad二次開發(fā)教程基礎(chǔ)篇
- 軟件工程-招聘管理系統(tǒng)-UML分析報告
評論
0/150
提交評論