中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題15 函數(shù)中的面積問題(解析版)_第1頁
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題15 函數(shù)中的面積問題(解析版)_第2頁
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題15 函數(shù)中的面積問題(解析版)_第3頁
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題15 函數(shù)中的面積問題(解析版)_第4頁
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題15 函數(shù)中的面積問題(解析版)_第5頁
已閱讀5頁,還剩35頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題15函數(shù)中的面積問題函數(shù)中面積問題一般包括面積的最大值和最小值或者等于某個(gè)數(shù)值的問題。在解決函數(shù)中的面積問題時(shí),通常需要過三角形或多邊形的一個(gè)端點(diǎn),做坐標(biāo)軸的平行線,把三角形或多邊形進(jìn)行割補(bǔ)呈三角形,從而用坐標(biāo)將三角形的底和高表達(dá)出來。如圖,SKIPIF1<0。 (2022·內(nèi)蒙古·中考真題)如圖,拋物線SKIPIF1<0經(jīng)過SKIPIF1<0,SKIPIF1<0兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為A,與y軸相交于點(diǎn)C.(1)求拋物線的解析式和點(diǎn)C的坐標(biāo);(2)若點(diǎn)M在直線SKIPIF1<0上方的拋物線上運(yùn)動(dòng)(與點(diǎn)B,C不重合),求使SKIPIF1<0面積最大時(shí)M點(diǎn)的坐標(biāo),并求最大面積;(請(qǐng)?jiān)趫D1中探索)(3)設(shè)點(diǎn)Q在y軸上,點(diǎn)P在拋物線上,要使以點(diǎn)A,B,P,Q為頂點(diǎn)的四邊形是平行四邊形,求所有滿足條件的點(diǎn)P的坐標(biāo).(請(qǐng)?jiān)趫D2中探索)(1)用待定系數(shù)法求函數(shù)的解析式即可;(2)作直線BC,過M點(diǎn)作MN∥y軸交BC于點(diǎn)N,求出直線BC的解析式,設(shè)M(m,-SKIPIF1<0+m+SKIPIF1<0),則N(m,-SKIPIF1<0m+SKIPIF1<0),可得S△MBC=SKIPIF1<0?MN?OB=SKIPIF1<0+SKIPIF1<0,再求解即可;(3)設(shè)Q(0,t),P(m,-SKIPIF1<0+m+SKIPIF1<0),分三種情況討論:①當(dāng)AB為平行四邊形的對(duì)角線時(shí);②當(dāng)AQ為平行四邊形的對(duì)角線時(shí);③當(dāng)AP為平行四邊形的對(duì)角線時(shí);根據(jù)平行四邊形的對(duì)角線互相平分,利用中點(diǎn)坐標(biāo)公式求解即可.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),S有最大值為SKIPIF1<0(3)滿足條件的點(diǎn)P坐標(biāo)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0【詳解】(1)解:把點(diǎn)SKIPIF1<0和SKIPIF1<0分別代入SKIPIF1<0可得SKIPIF1<0,解得SKIPIF1<0∴拋物線的解析式為SKIPIF1<0把SKIPIF1<0代入SKIPIF1<0可得SKIPIF1<0∴SKIPIF1<0;(2)解:作直線SKIPIF1<0,作SKIPIF1<0軸交直線SKIPIF1<0于點(diǎn)N設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0(SKIPIF1<0)把點(diǎn)SKIPIF1<0和SKIPIF1<0分別代入SKIPIF1<0可得SKIPIF1<0解得SKIPIF1<0∴直線SKIPIF1<0的解析式為SKIPIF1<0設(shè)點(diǎn)M的橫坐標(biāo)為m∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0SKIPIF1<0∴SKIPIF1<0SKIPIF1<0(SKIPIF1<0)∴當(dāng)SKIPIF1<0時(shí),S有最大值為SKIPIF1<0把SKIPIF1<0代入SKIPIF1<0可得SKIPIF1<0∴SKIPIF1<0;(3)解:當(dāng)以SKIPIF1<0為邊時(shí),只要SKIPIF1<0,且SKIPIF1<0即可∴點(diǎn)P的橫坐標(biāo)為4或-4把SKIPIF1<0代入SKIPIF1<0可得SKIPIF1<0把SKIPIF1<0代入SKIPIF1<0可得SKIPIF1<0∴此時(shí)SKIPIF1<0,SKIPIF1<0當(dāng)以SKIPIF1<0為對(duì)角線時(shí),作SKIPIF1<0軸于點(diǎn)H∵四邊形SKIPIF1<0是平行四邊形∴SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0和SKIPIF1<0中SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴點(diǎn)P的橫坐標(biāo)為2把SKIPIF1<0代入SKIPIF1<0可得SKIPIF1<0∴此時(shí)SKIPIF1<0綜上所述,滿足條件的點(diǎn)P坐標(biāo)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0本題考查二次函數(shù)的圖象及性質(zhì),熟練掌握二次函數(shù)的圖象及性質(zhì),平行四邊形的性質(zhì),分類討論是解題的關(guān)鍵。(2022·四川綿陽·統(tǒng)考中考真題)如圖,一次函數(shù)SKIPIF1<0與反比例函數(shù)SKIPIF1<0在第一象限交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),SKIPIF1<0垂直x軸于點(diǎn)SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點(diǎn),四邊形SKIPIF1<0的面積為38.(1)求反比例函數(shù)及一次函數(shù)的解析式;(2)點(diǎn)P是反比例函數(shù)第三象限內(nèi)的圖象上一動(dòng)點(diǎn),請(qǐng)簡要描述使SKIPIF1<0的面積最小時(shí)點(diǎn)P的位置(不需證明),并求出點(diǎn)P的坐標(biāo)和SKIPIF1<0面積的最小值.(1)利用待定系數(shù)法即可求出反比例函數(shù)解析式,再利用四邊形SKIPIF1<0的面積為38.求出SKIPIF1<0,進(jìn)一步利用待定系數(shù)法即可求出一次函數(shù)解析式;(2)平移一次函數(shù)與SKIPIF1<0在第三象限有唯一交點(diǎn)P,此時(shí)P到MN的距離最短,SKIPIF1<0的面積最小,設(shè)平移后的一次函數(shù)解析式為:SKIPIF1<0,聯(lián)立SKIPIF1<0,解得:SKIPIF1<0,進(jìn)一步求出:SKIPIF1<0,即SKIPIF1<0,連接PM,PN,過點(diǎn)P作SKIPIF1<0的延長線交于點(diǎn)B,作SKIPIF1<0交于點(diǎn)C,根據(jù)SKIPIF1<0以及點(diǎn)的坐標(biāo)即可求出SKIPIF1<0的面積.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0.【詳解】(1)解:∵SKIPIF1<0在SKIPIF1<0上,∴SKIPIF1<0,即反比例函數(shù)解析式為:SKIPIF1<0,設(shè)SKIPIF1<0,∵四邊形SKIPIF1<0的面積為38.∴SKIPIF1<0,整理得:SKIPIF1<0,解得:SKIPIF1<0(舍去),SKIPIF1<0,∴SKIPIF1<0,將SKIPIF1<0和SKIPIF1<0代入SKIPIF1<0可得:SKIPIF1<0解得:SKIPIF1<0,∴一次函數(shù)解析式為:SKIPIF1<0.(2)解:平移一次函數(shù)SKIPIF1<0到第三象限,與SKIPIF1<0在第三象限有唯一交點(diǎn)P,此時(shí)P到MN的距離最短,SKIPIF1<0的面積最小,設(shè)平移后的一次函數(shù)解析式為:SKIPIF1<0,聯(lián)立SKIPIF1<0可得:SKIPIF1<0,整理得:SKIPIF1<0,∵有唯一交點(diǎn)P,∴SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0(舍去),將SKIPIF1<0代入SKIPIF1<0得:SKIPIF1<0,解得:SKIPIF1<0經(jīng)檢驗(yàn):SKIPIF1<0是分式方程SKIPIF1<0的根,∴SKIPIF1<0,連接PM,PN,過點(diǎn)P作SKIPIF1<0的延長線交于點(diǎn)B,作SKIPIF1<0交于點(diǎn)C,則:SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.本題考查一次函數(shù)和反比例函數(shù)的綜合,難度較大,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式,掌握平行線之間的距離,解分式方程,解一元二次方程知識(shí)點(diǎn)。(2022·遼寧大連·統(tǒng)考中考真題)在平面直角坐標(biāo)系中,拋物線SKIPIF1<0與x軸相交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,連接SKIPIF1<0.(1)求點(diǎn)B,點(diǎn)C的坐標(biāo);(2)如圖1,點(diǎn)SKIPIF1<0在線段SKIPIF1<0上(點(diǎn)E不與點(diǎn)B重合),點(diǎn)F在y軸負(fù)半軸上,SKIPIF1<0,連接SKIPIF1<0,設(shè)SKIPIF1<0的面積為SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0,SKIPIF1<0,當(dāng)S取最大值時(shí),求m的值;(3)如圖2,拋物線的頂點(diǎn)為D,連接SKIPIF1<0,點(diǎn)P在第一象限的拋物線上,SKIPIF1<0與SKIPIF1<0相交于點(diǎn)Q,是否存在點(diǎn)P,使SKIPIF1<0,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.(1)利用拋物線的解析式,令x=0,可得C的坐標(biāo),令y=0,可得A,C的坐標(biāo);(2)由SKIPIF1<0可得SKIPIF1<0再分別表示SKIPIF1<0SKIPIF1<0再建立二次函數(shù)關(guān)系式,再利用二次函數(shù)的性質(zhì)可得答案;(3)如圖,延長DC與x軸交于點(diǎn)N,過A作SKIPIF1<0于H,過SKIPIF1<0作SKIPIF1<0軸于K,連接BD,證明SKIPIF1<0證明SKIPIF1<0求解SKIPIF1<0可得SKIPIF1<0再求解SKIPIF1<0及SKIPIF1<0為SKIPIF1<0再聯(lián)立:SKIPIF1<0從而可得答案.【答案】(1)SKIPIF1<0(2)當(dāng)SKIPIF1<0最大時(shí),SKIPIF1<0(3)SKIPIF1<0【詳解】(1)解:∵SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0SKIPIF1<0令SKIPIF1<0則SKIPIF1<0解得:SKIPIF1<0∴SKIPIF1<0(2)∵SKIPIF1<0∴SKIPIF1<0SKIPIF1<0而SKIPIF1<0∴SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0∴當(dāng)SKIPIF1<0最大時(shí),則SKIPIF1<0(3)如圖,延長DC與x軸交于點(diǎn)N,過A作SKIPIF1<0于H,過SKIPIF1<0作SKIPIF1<0軸于K,連接BD,SKIPIF1<0SKIPIF1<0,SKIPIF1<0∵拋物線SKIPIF1<0∴頂點(diǎn)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0軸,SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0設(shè)SKIPIF1<0為SKIPIF1<0SKIPIF1<0解得SKIPIF1<0∴SKIPIF1<0為SKIPIF1<0聯(lián)立:SKIPIF1<0解得:SKIPIF1<0所以SKIPIF1<0本題考查的是二次函數(shù)與坐標(biāo)軸的交點(diǎn)問題,二次函數(shù)的性質(zhì),等腰直角三角形的性質(zhì),銳角三角函數(shù)的應(yīng)用,利用待定系數(shù)法求解一次函數(shù)的解析式,函數(shù)的交點(diǎn)坐標(biāo)問題,求解Q的坐標(biāo)是解本題的關(guān)鍵.1.(2023·廣東佛山·校考一模)如圖,在平面直角坐標(biāo)系中,SKIPIF1<0為坐標(biāo)原點(diǎn),一次函數(shù)SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,若點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸的對(duì)稱點(diǎn)SKIPIF1<0在一次函數(shù)SKIPIF1<0的圖象上.(1)求SKIPIF1<0的值;(2)若一次函數(shù)SKIPIF1<0與一次函數(shù)SKIPIF1<0交于SKIPIF1<0,且點(diǎn)SKIPIF1<0關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn)SKIPIF1<0.求過SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)對(duì)應(yīng)的二次函數(shù)表達(dá)式;(3)SKIPIF1<0為拋物線上一點(diǎn),它關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn)SKIPIF1<0.①當(dāng)四邊形SKIPIF1<0為菱形時(shí),求點(diǎn)SKIPIF1<0的坐標(biāo);②若點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,當(dāng)SKIPIF1<0為何值時(shí),四邊形SKIPIF1<0的面積最大?請(qǐng)說明理由.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)①SKIPIF1<0或SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),四邊形SKIPIF1<0的面積最大.理由見解析【詳解】(1)解:SKIPIF1<0一次函數(shù)SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸的對(duì)稱點(diǎn)SKIPIF1<0在一次函數(shù)SKIPIF1<0的圖象上,SKIPIF1<0點(diǎn)SKIPIF1<0坐標(biāo)為SKIPIF1<0,SKIPIF1<0點(diǎn)SKIPIF1<0坐標(biāo)為SKIPIF1<0,SKIPIF1<0點(diǎn)SKIPIF1<0在一次函數(shù)SKIPIF1<0的圖象上,SKIPIF1<0,SKIPIF1<0;(2)解:由方程組SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0點(diǎn)坐標(biāo)為SKIPIF1<0,又SKIPIF1<0點(diǎn)為SKIPIF1<0點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn),SKIPIF1<0點(diǎn)坐標(biāo)為SKIPIF1<0,SKIPIF1<0一次函數(shù)SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,SKIPIF1<0點(diǎn)坐標(biāo)為SKIPIF1<0,設(shè)二次函數(shù)對(duì)應(yīng)的函數(shù)表達(dá)式為SKIPIF1<0,把SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)的坐標(biāo)分別代入,得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0二次函數(shù)對(duì)應(yīng)的函數(shù)表達(dá)式為SKIPIF1<0;(3)①當(dāng)四邊形SKIPIF1<0為菱形時(shí),SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0對(duì)應(yīng)的函數(shù)表達(dá)式為SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0對(duì)應(yīng)的函數(shù)表達(dá)式為SKIPIF1<0.聯(lián)立方程組SKIPIF1<0.解得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0點(diǎn)坐標(biāo)為SKIPIF1<0或SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),四邊形SKIPIF1<0的面積最大.理由如下:如圖,過SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0軸的垂線,交直線SKIPIF1<0于點(diǎn)SKIPIF1<0,易知SKIPIF1<0,SKIPIF1<0線段SKIPIF1<0的長固定不變,SKIPIF1<0當(dāng)SKIPIF1<0最大時(shí),四邊形SKIPIF1<0的面積最大,易知SKIPIF1<0(固定不變),SKIPIF1<0當(dāng)SKIPIF1<0最大時(shí),SKIPIF1<0也最大,SKIPIF1<0點(diǎn)在二次函數(shù)圖象上,SKIPIF1<0點(diǎn)在一次函數(shù)SKIPIF1<0的圖象上,SKIPIF1<0點(diǎn)坐標(biāo)為SKIPIF1<0,SKIPIF1<0點(diǎn)坐標(biāo)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最大值1,此時(shí)SKIPIF1<0有最大值,即四邊形SKIPIF1<0的面積最大.2.(2022·遼寧盤錦·??家荒#┤鐖D:直線SKIPIF1<0交y軸丁點(diǎn)D,交x軸于點(diǎn)SKIPIF1<0,交拋物線SKIPIF1<0于點(diǎn)SKIPIF1<0,點(diǎn)E.點(diǎn)SKIPIF1<0在拋物線上,連接SKIPIF1<0.(1)求拋物線的解析式;(2)點(diǎn)Q從點(diǎn)A出發(fā),以每秒2個(gè)單位長度的速度沿折線A-B-C做勻速運(yùn)動(dòng),當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,SKIPIF1<0的面積為S,求S與t的函數(shù)關(guān)系式;(3)在(2)的條件下,若SKIPIF1<0,請(qǐng)直接寫出此時(shí)t的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0或SKIPIF1<0【思路分析】(1)利用待定系數(shù)法即可求出拋物線的解析式;(2)求出直線SKIPIF1<0的解析式,得到SKIPIF1<0,SKIPIF1<0交y軸于點(diǎn)H,分兩種情況:①當(dāng)SKIPIF1<0時(shí),Q點(diǎn)線段SKIPIF1<0上,②當(dāng)SKIPIF1<0時(shí),Q點(diǎn)在線段SKIPIF1<0上,分別求出解析式即可;(3)連接SKIPIF1<0,則得到菱形SKIPIF1<0,得到SKIPIF1<0,推出SKIPIF1<0,再分兩種情況:①當(dāng)點(diǎn)Q運(yùn)動(dòng)到SKIPIF1<0邊上時(shí),②當(dāng)點(diǎn)Q運(yùn)動(dòng)到SKIPIF1<0上時(shí),分別求出t的值.【詳解】(1)解:將點(diǎn)A、B坐標(biāo)代入SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,∴拋物線的解析式為SKIPIF1<0;(2)將SKIPIF1<0、SKIPIF1<0分別代入SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,∴直線SKIPIF1<0的解析式為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0如圖,SKIPIF1<0交y軸于點(diǎn)H,則SKIPIF1<0,∴SKIPIF1<0,由A,B,C坐標(biāo)知SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),Q點(diǎn)線段SKIPIF1<0上,∴SKIPIF1<0,②當(dāng)SKIPIF1<0時(shí),Q點(diǎn)在線段SKIPIF1<0上,由SKIPIF1<0、SKIPIF1<0求得SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,綜上,SKIPIF1<0(3)連接SKIPIF1<0,則得到菱形SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;①當(dāng)點(diǎn)Q運(yùn)動(dòng)到SKIPIF1<0邊上時(shí),如答圖2,則SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;②當(dāng)點(diǎn)Q運(yùn)動(dòng)到SKIPIF1<0上時(shí),如答圖3,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,綜上,若SKIPIF1<0,此時(shí)t的值為SKIPIF1<0或SKIPIF1<0.3.(2022·重慶璧山·統(tǒng)考一模)如圖,在平面直角坐標(biāo)系SKIPIF1<0中,拋物線SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0.(1)求拋物線的解析式;(2)如圖1,連接SKIPIF1<0,點(diǎn)SKIPIF1<0為線段SKIPIF1<0下方拋物線上一動(dòng)點(diǎn),過點(diǎn)SKIPIF1<0作SKIPIF1<0軸交線段SKIPIF1<0于SKIPIF1<0點(diǎn),連接SKIPIF1<0,記SKIPIF1<0的面積為SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0,求SKIPIF1<0的最大值及此時(shí)點(diǎn)SKIPIF1<0的坐標(biāo);(3)如圖2,在(2)問的條件下,將拋物線沿射線SKIPIF1<0方向平移SKIPIF1<0個(gè)單位長度得到新拋物線,動(dòng)點(diǎn)SKIPIF1<0在原拋物線的對(duì)稱軸上,點(diǎn)SKIPIF1<0為新拋物線上一點(diǎn),直接寫出所有使得以點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為頂點(diǎn)的四邊形是平行四邊形的點(diǎn)SKIPIF1<0的坐標(biāo),并把求其中一個(gè)點(diǎn)SKIPIF1<0的坐標(biāo)的過程寫出來.【答案】(1)SKIPIF1<0(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值,最大值為1,此時(shí)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0(3)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0【思路分析】(1)將SKIPIF1<0,SKIPIF1<0代入拋物線SKIPIF1<0,列方程組求解即可得到答案;(2)延長SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,設(shè)直線SKIPIF1<0的函數(shù)表達(dá)式為SKIPIF1<0,將SKIPIF1<0,SKIPIF1<0代入列方程組求解得出解析式,設(shè)SKIPIF1<0,根據(jù)SKIPIF1<0軸得到SKIPIF1<0,SKIPIF1<0,根據(jù)三角形面積公式用t表示出SKIPIF1<0,利用函數(shù)性質(zhì)即可得到最值;(3)根據(jù)SKIPIF1<0,SKIPIF1<0得到SKIPIF1<0,結(jié)合拋物線沿射線SKIPIF1<0方向平移SKIPIF1<0個(gè)單位長度,得到拋物線向右平移SKIPIF1<0個(gè)單位長度,向上平移3個(gè)單位長度,得到新拋物線解析式,設(shè)點(diǎn)SKIPIF1<0,根據(jù)平行四邊形對(duì)角線互相平分分類討論根據(jù)中點(diǎn)坐標(biāo)公式即可得到答案.【詳解】(1)解:將SKIPIF1<0,SKIPIF1<0代入拋物線SKIPIF1<0得,SKIPIF1<0,解得SKIPIF1<0,∴拋物線的解析式為:SKIPIF1<0;(2)解:如圖,延長SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,設(shè)直線SKIPIF1<0的函數(shù)表達(dá)式為SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,∴直線SKIPIF1<0的函數(shù)表達(dá)式為SKIPIF1<0,設(shè)SKIPIF1<0,其中SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值,最大值為1,此時(shí)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0;(3)解:∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵拋物線沿射線SKIPIF1<0方向平移SKIPIF1<0個(gè)單位長度,∴拋物線向右平移SKIPIF1<0個(gè)單位長度,向上平移3個(gè)單位長度,∴平移后的拋物線解析式為SKIPIF1<0,∵點(diǎn)SKIPIF1<0在原拋物線對(duì)稱軸上,∴設(shè)點(diǎn)SKIPIF1<0,①當(dāng)以SKIPIF1<0為對(duì)角線時(shí),SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∵點(diǎn)SKIPIF1<0為新拋物線上一點(diǎn),∴SKIPIF1<0,②當(dāng)以SKIPIF1<0為對(duì)角線時(shí),SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,∵點(diǎn)SKIPIF1<0為新拋物線上一點(diǎn),∴SKIPIF1<0,③當(dāng)以SKIPIF1<0為對(duì)角線時(shí),SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,∵點(diǎn)SKIPIF1<0為新拋物線上一點(diǎn),∴SKIPIF1<0,綜上所述,點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.4.(2022·浙江寧波·??寄M預(yù)測)如圖,直線SKIPIF1<0與雙曲線SKIPIF1<0交于A、B兩點(diǎn),M是第一象限內(nèi)的雙曲線上任意一點(diǎn).(1)若點(diǎn)A坐標(biāo)為SKIPIF1<0,求M點(diǎn)坐標(biāo).(2)若SKIPIF1<0,連接SKIPIF1<0,若SKIPIF1<0的面積是34,求k值.(3)設(shè)直線SKIPIF1<0分別與x軸相交于P、Q兩點(diǎn),且SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)2【思路分析】(1)把點(diǎn)SKIPIF1<0代入SKIPIF1<0可求得反比例函數(shù)解析式,進(jìn)而可得點(diǎn)B的坐標(biāo),設(shè)SKIPIF1<0,運(yùn)用勾股定理即可求得答案;(2)設(shè)SKIPIF1<0,則SKIPIF1<0,代入代入SKIPIF1<0可求得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,過點(diǎn)O作SKIPIF1<0交SKIPIF1<0于點(diǎn)D,過點(diǎn)B作SKIPIF1<0軸于點(diǎn)E,過點(diǎn)D作SKIPIF1<0軸于點(diǎn)F,可證得SKIPIF1<0,進(jìn)而求得點(diǎn)D的坐標(biāo),利用待定系數(shù)法求得直線SKIPIF1<0的解析式,聯(lián)立方程組可求得點(diǎn)M的坐標(biāo),再由SKIPIF1<0的面積是34,建立方程求解即可得出答案;(3)設(shè)SKIPIF1<0,代入SKIPIF1<0得:SKIPIF1<0,聯(lián)立方程組求出A、B兩點(diǎn)的坐標(biāo),過點(diǎn)A、B、M分別作x軸的垂線SKIPIF1<0,垂足分別為G、K、H,過點(diǎn)M作x軸的平行線交SKIPIF1<0于R,交SKIPIF1<0于L,利用相似三角形性質(zhì)即可得出:SKIPIF1<0,SKIPIF1<0,再由SKIPIF1<0,得出:SKIPIF1<0,從而得出SKIPIF1<0的值.【詳解】(1)解:把點(diǎn)SKIPIF1<0代入SKIPIF1<0得:SKIPIF1<0,∴反比例函數(shù)解析式為SKIPIF1<0,∵SKIPIF1<0,∴由反比例函數(shù)與正比例函數(shù)圖象的對(duì)稱性可得點(diǎn)B坐標(biāo)為SKIPIF1<0,設(shè)SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,整理化簡得SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0(與A重合,舍去)或SKIPIF1<0(舍去)或SKIPIF1<0或SKIPIF1<0(舍去),∴SKIPIF1<0;(2)設(shè)SKIPIF1<0,則SKIPIF1<0,將SKIPIF1<0代入SKIPIF1<0,得:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,如圖2,過點(diǎn)O作SKIPIF1<0交SKIPIF1<0于點(diǎn)D,過點(diǎn)B作SKIPIF1<0軸于點(diǎn)E,過點(diǎn)D作SKIPIF1<0軸于點(diǎn)F,則SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0是等腰直角三角形,∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,∴直線SKIPIF1<0的解析式為SKIPIF1<0,聯(lián)立方程組,得:SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,,∵M(jìn)是第一象限內(nèi)的雙曲線上任意一點(diǎn),∴SKIPIF1<0,∴SKIPIF1<0,過點(diǎn)A作SKIPIF1<0于點(diǎn)H,則SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0的面積是34,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(3)設(shè)SKIPIF1<0代入SKIPIF1<0得:SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,過點(diǎn)A、B、M分別作x軸的垂線SKIPIF1<0,垂足分別為G、K、H,過點(diǎn)M作x軸的平行線交SKIPIF1<0于R,交SKIPIF1<0于L,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0的值為2.5.(2022·山東濟(jì)南·模擬預(yù)測)如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線l與拋物線SKIPIF1<0相交于SKIPIF1<0兩點(diǎn).(1)求出拋物線的解析式;(2)在坐標(biāo)軸上是否存在點(diǎn)D,使得SKIPIF1<0是以線段SKIPIF1<0為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說明理由;(3)點(diǎn)P是線段SKIPIF1<0上一動(dòng)點(diǎn),(點(diǎn)P不與點(diǎn)A、B重合),過點(diǎn)P作SKIPIF1<0,交第一象限內(nèi)的拋物線于點(diǎn)M,過點(diǎn)M作SKIPIF1<0軸于點(diǎn)C,交SKIPIF1<0于點(diǎn)N,若SKIPIF1<0的面積SKIPIF1<0滿足SKIPIF1<0,求出SKIPIF1<0的值,并求出此時(shí)點(diǎn)M的坐標(biāo).【答案】(1)SKIPIF1<0(2)存在,D點(diǎn)坐標(biāo)為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0(3)SKIPIF1<0,M點(diǎn)坐標(biāo)為SKIPIF1<0【思路分析】(1)利用待定系數(shù)法來求解;(2)分兩種情況來求解:點(diǎn)D在x軸上和點(diǎn)D在y軸上.當(dāng)點(diǎn)D在x軸上時(shí),過點(diǎn)A作SKIPIF1<0軸于點(diǎn)D,易求D點(diǎn)的坐標(biāo);當(dāng)點(diǎn)D在y軸上時(shí),設(shè)SKIPIF1<0,在SKIPIF1<0中利用勾股定理可求得d的值,可的答案;(3)過P作SKIPIF1<0于點(diǎn)F,易證SKIPIF1<0,從而得到SKIPIF1<0,在SKIPIF1<0中和在SKIPIF1<0中利用三角函數(shù)得出SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,利用SKIPIF1<0和SKIPIF1<0之間的面積關(guān)系,進(jìn)而表示出M的坐標(biāo),再根據(jù)M點(diǎn)在拋物線上求出a的值,進(jìn)而得到答案.【詳解】(1)解:∵SKIPIF1<0兩點(diǎn)在拋物線SKIPIF1<0的圖像上,∴SKIPIF1<0,解得SKIPIF1<0,∴拋物線解析式為SKIPIF1<0;(2)解:存在三個(gè)點(diǎn)滿足題意,理由如下:當(dāng)點(diǎn)D在x軸上時(shí),如圖1,過點(diǎn)A作AD⊥x軸于點(diǎn)D,∵SKIPIF1<0,∴D坐標(biāo)為SKIPIF1<0;當(dāng)點(diǎn)D在y軸上時(shí),設(shè)SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,∵SKIPIF1<0是以SKIPIF1<0為斜邊的直角三角形,∴SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,或SKIPIF1<0∴D點(diǎn)坐標(biāo)為SKIPIF1<0或SKIPIF1<0;綜上可知存在滿足條件的D點(diǎn),其坐標(biāo)為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0;(3)解:如圖2,過P作SKIPIF1<0于點(diǎn)F,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴M點(diǎn)坐標(biāo)為SKIPIF1<0,又M點(diǎn)在拋物線上,代入可得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),SKIPIF1<0,SKIPIF1<0,∴點(diǎn)M的坐標(biāo)為SKIPIF1<0.6.(2022·甘肅嘉峪關(guān)·校考一模)如圖,已知拋物線SKIPIF1<0與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知SKIPIF1<0,SKIPIF1<0.(1)求拋物線的表達(dá)式;(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使SKIPIF1<0是以SKIPIF1<0為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由;(3)點(diǎn)E是線段SKIPIF1<0上的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形SKIPIF1<0的面積最大?求出四邊形SKIPIF1<0的最大面積及此時(shí)E點(diǎn)的坐標(biāo).【答案】(1)SKIPIF1<0(2)存在;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(3)SKIPIF1<0,SKIPIF1<0【思路分析】(1)將點(diǎn)A、C的坐標(biāo)分別代入可得二元一次方程組,解方程組即可得出m、n的值;(2)根據(jù)二次函數(shù)的解析式可得對(duì)稱軸方程,由勾股定理求出SKIPIF1<0的值,以點(diǎn)C為圓心,SKIPIF1<0為半徑作弧,交對(duì)稱軸于SKIPIF1<0;以點(diǎn)D為圓心SKIPIF1<0為半徑作圓交對(duì)稱軸于點(diǎn)SKIPIF1<0,SKIPIF1<0,作SKIPIF1<0垂直于對(duì)稱軸于點(diǎn)H,由等腰三角形的性質(zhì)就可以求出結(jié)論;(3)由二次函數(shù)的解析式可求出B點(diǎn)的坐標(biāo),從而可求出直線SKIPIF1<0的解析式,從而可設(shè)E點(diǎn)的坐標(biāo)SKIPIF1<0,進(jìn)而可表示出F的坐標(biāo),由四邊形SKIPIF1<0的面積SKIPIF1<0可求出S與SKIPIF1<0的關(guān)系式,由二次函數(shù)的性質(zhì)就可以求出結(jié)論.【詳解】(1)解:已知拋物線SKIPIF1<0經(jīng)過點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0拋物線表達(dá)式為:SKIPIF1<0;(2)解:由(1)可知拋物線對(duì)稱軸為直線SKIPIF1<0,則點(diǎn)SKIPIF1<0坐標(biāo)為SKIPIF1<0,SKIPIF1<0的長為SKIPIF1<0,如圖1所示,使SKIPIF1<0是以SKIPIF1<0為腰的等腰三角形的點(diǎn)SKIPIF1<0有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三種情況,其中SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0,

垂足為點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,綜上可得,在拋物線的對(duì)稱軸上存在點(diǎn)P,使SKIPIF1<0是以SKIPIF1<0為腰的等腰三角形,P點(diǎn)的坐標(biāo)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,;(3)解:根據(jù)題意作圖2,過點(diǎn)SKIPIF1<0作SKIPIF1<0,垂足為點(diǎn)SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故點(diǎn)SKIPIF1<0坐標(biāo)為SKIPIF1<0,SKIPIF1<0,設(shè)直線SKIPIF1<0解析式為SKIPIF1<0,過點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,則直線SKIPIF1<0解析式為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,故SKIPIF1<0時(shí),四邊形SKIPIF1<0的面積取得最大值為SKIPIF1<0,此時(shí)點(diǎn)SKIPIF1<0坐標(biāo)為SKIPIF1<0,.7.(2022·山東濟(jì)南·統(tǒng)考一模)如圖,拋物線SKIPIF1<0與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,已知A,B兩點(diǎn)坐標(biāo)分別是SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0.(1)求拋物線的表達(dá)式;(2)將SKIPIF1<0沿SKIPIF1<0所在直線折疊,得到SKIPIF1<0,點(diǎn)A的對(duì)應(yīng)點(diǎn)D是否落在拋物線的對(duì)稱軸上?若點(diǎn)D在對(duì)稱軸上,請(qǐng)求出點(diǎn)D的坐標(biāo);若點(diǎn)D不在對(duì)稱軸上,請(qǐng)說明理由;(3)若點(diǎn)P是拋物線位于第二象限圖象上的一動(dòng)點(diǎn),連接SKIPIF1<0交SKIPIF1<0于點(diǎn)Q,連接BP,SKIPIF1<0的面積記為SKIPIF1<0,SKIPIF1<0的面積記為SKIPIF1<0,求SKIPIF1<0的值最大時(shí)點(diǎn)P的坐標(biāo).【答案】(1)SKIPIF1<0(2)點(diǎn)SKIPIF1<0不在拋物線的對(duì)稱軸上,理由見解析(3)SKIPIF1<0【思路分析】(1)利用待定系數(shù)法可求得函數(shù)的表達(dá)式;(2)拋物線的表達(dá)式為SKIPIF1<0,可證明SKIPIF1<0,繼而可證SKIPIF1<0,則將SKIPIF1<0沿SKIPIF1<0所在直線折疊,點(diǎn)D一定落在直線SKIPIF1<0上,延長SKIPIF1<0至D,使SKIPIF1<0,過點(diǎn)D作SKIPIF1<0軸交y軸于點(diǎn)E,可證SKIPIF1<0,可得點(diǎn)D橫坐標(biāo).則可判斷D點(diǎn)是否在拋物線對(duì)稱軸上;(3)先求出過點(diǎn)SKIPIF1<0、SKIPIF1<0的直線解析式,分別過A、P作x軸的垂線,利用解析式,用同一個(gè)字母m表示出P,N的坐標(biāo),再證明SKIPIF1<0,進(jìn)而用m表示出SKIPIF1<0的值,根據(jù)二次函數(shù)的性質(zhì)可以確定出SKIPIF1<0的最大值,進(jìn)而可確定出此時(shí)的P點(diǎn)坐標(biāo).【詳解】(1)解:∵拋物線SKIPIF1<0過點(diǎn)SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴拋物線的表達(dá)式為SKIPIF1<0.(2)解:點(diǎn)SKIPIF1<0不在拋物線的對(duì)稱軸上,理由是:∵拋物線的表達(dá)式為SKIPIF1<0,∴點(diǎn)SKIPIF1<0坐標(biāo)為SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∴將SKIPIF1<0沿SKIPIF1<0所在直線折疊,點(diǎn)SKIPIF1<0一定落在直線SKIPIF1<0上,延長SKIPIF1<0至SKIPIF1<0,使SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0軸交SKIPIF1<0軸于點(diǎn)SKIPIF1<0.又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論