版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線(xiàn)…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)云南體育運(yùn)動(dòng)職業(yè)技術(shù)學(xué)院
《數(shù)據(jù)挖掘與決策管理》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)庫(kù)中,索引可以提高數(shù)據(jù)的查詢(xún)效率。以下哪種情況下不適合創(chuàng)建索引?()A.表中數(shù)據(jù)量較小B.經(jīng)常作為查詢(xún)條件的字段C.唯一性較差的字段D.頻繁更新的字段2、在數(shù)據(jù)分析的過(guò)程中,當(dāng)面對(duì)一個(gè)包含大量用戶(hù)消費(fèi)行為數(shù)據(jù)的數(shù)據(jù)集,需要找出影響用戶(hù)購(gòu)買(mǎi)決策的關(guān)鍵因素,例如產(chǎn)品價(jià)格、促銷(xiāo)活動(dòng)、用戶(hù)評(píng)價(jià)等。假設(shè)數(shù)據(jù)的維度眾多,關(guān)系復(fù)雜,以下哪種數(shù)據(jù)分析方法可能最為有效?()A.描述性統(tǒng)計(jì)分析B.相關(guān)性分析C.因子分析D.回歸分析3、數(shù)據(jù)分析中的分類(lèi)算法用于將數(shù)據(jù)分為不同的類(lèi)別。假設(shè)要構(gòu)建一個(gè)分類(lèi)模型來(lái)預(yù)測(cè)客戶(hù)是否會(huì)流失,以下哪種算法可能對(duì)處理不平衡的數(shù)據(jù)集(流失客戶(hù)數(shù)量遠(yuǎn)少于未流失客戶(hù))表現(xiàn)較好?()A.邏輯回歸B.決策樹(shù)C.支持向量機(jī)D.隨機(jī)森林4、對(duì)于一個(gè)分類(lèi)問(wèn)題,如果不同類(lèi)別的樣本數(shù)量差異較大,在評(píng)估模型性能時(shí),以下哪種指標(biāo)需要特別關(guān)注?()A.準(zhǔn)確率B.召回率C.F1值D.以上都是5、對(duì)于數(shù)據(jù)可視化,假設(shè)要展示不同地區(qū)在過(guò)去十年間的經(jīng)濟(jì)增長(zhǎng)趨勢(shì)。數(shù)據(jù)涵蓋多個(gè)指標(biāo),且地區(qū)之間存在較大差異。為了清晰、直觀地呈現(xiàn)數(shù)據(jù)的變化和對(duì)比,以下哪種可視化圖表可能是最適合的?()A.柱狀圖,分別展示每個(gè)地區(qū)每年的經(jīng)濟(jì)數(shù)據(jù)B.折線(xiàn)圖,呈現(xiàn)每個(gè)地區(qū)經(jīng)濟(jì)數(shù)據(jù)隨時(shí)間的變化C.餅圖,展示各地區(qū)在某一年的經(jīng)濟(jì)占比D.箱線(xiàn)圖,反映數(shù)據(jù)的分布情況6、數(shù)據(jù)分析中的數(shù)據(jù)血緣追蹤用于了解數(shù)據(jù)的來(lái)源和流向。假設(shè)要追蹤一個(gè)分析報(bào)告中數(shù)據(jù)的演變過(guò)程,以下關(guān)于數(shù)據(jù)血緣追蹤的描述,正確的是:()A.不記錄數(shù)據(jù)的處理步驟和轉(zhuǎn)換過(guò)程,無(wú)法進(jìn)行血緣追蹤B.簡(jiǎn)單地記錄部分?jǐn)?shù)據(jù)的來(lái)源,不考慮整個(gè)流程C.建立完善的數(shù)據(jù)血緣管理系統(tǒng),記錄數(shù)據(jù)的采集、清洗、轉(zhuǎn)換、聚合等全過(guò)程,以便清晰地了解數(shù)據(jù)的來(lái)龍去脈和影響范圍D.認(rèn)為數(shù)據(jù)血緣追蹤是額外的工作,對(duì)數(shù)據(jù)分析沒(méi)有幫助7、在數(shù)據(jù)分析的異常檢測(cè)中,假設(shè)要從大量的交易數(shù)據(jù)中找出異常的交易行為,例如高額、頻繁或不符合常規(guī)模式的交易。以下哪種異常檢測(cè)方法可能更能有效地發(fā)現(xiàn)這些異常?()A.基于統(tǒng)計(jì)的方法,設(shè)定閾值判斷異常B.基于距離的方法,計(jì)算數(shù)據(jù)點(diǎn)之間的距離C.基于密度的方法,根據(jù)數(shù)據(jù)的局部密度D.不進(jìn)行異常檢測(cè),認(rèn)為所有交易都是正常的8、數(shù)據(jù)分析中的因果推斷旨在確定變量之間的因果關(guān)系,而非僅僅是相關(guān)性。假設(shè)你想研究廣告投入與產(chǎn)品銷(xiāo)售之間的關(guān)系,以下關(guān)于因果推斷方法的選擇,哪一項(xiàng)是最關(guān)鍵的?()A.進(jìn)行隨機(jī)對(duì)照實(shí)驗(yàn),控制其他因素來(lái)確定因果關(guān)系B.基于觀察數(shù)據(jù),使用回歸分析來(lái)推斷因果關(guān)系C.僅僅依靠相關(guān)系數(shù)來(lái)判斷因果關(guān)系D.主觀猜測(cè)和經(jīng)驗(yàn)判斷因果關(guān)系9、在進(jìn)行數(shù)據(jù)分析時(shí),需要考慮數(shù)據(jù)的時(shí)效性和動(dòng)態(tài)性。假設(shè)要分析實(shí)時(shí)的交通流量數(shù)據(jù),以?xún)?yōu)化交通信號(hào)燈控制策略。以下哪種數(shù)據(jù)分析方法在處理這種實(shí)時(shí)動(dòng)態(tài)數(shù)據(jù)時(shí)更能及時(shí)提供有效的決策支持?()A.流數(shù)據(jù)分析B.批量數(shù)據(jù)分析C.離線(xiàn)數(shù)據(jù)分析D.以上方法效果相同10、數(shù)據(jù)分析中的數(shù)據(jù)質(zhì)量評(píng)估需要從多個(gè)方面衡量數(shù)據(jù)的優(yōu)劣。假設(shè)要評(píng)估一個(gè)收集的市場(chǎng)調(diào)研數(shù)據(jù)的質(zhì)量,包括準(zhǔn)確性、完整性、一致性和時(shí)效性等方面。以下哪種數(shù)據(jù)質(zhì)量評(píng)估指標(biāo)在綜合評(píng)估數(shù)據(jù)質(zhì)量時(shí)更具全面性和客觀性?()A.數(shù)據(jù)質(zhì)量得分B.數(shù)據(jù)質(zhì)量矩陣C.數(shù)據(jù)質(zhì)量報(bào)告D.以上方法效果相同11、數(shù)據(jù)分析中的文本分析是一個(gè)重要領(lǐng)域。假設(shè)你要對(duì)大量的客戶(hù)評(píng)論進(jìn)行情感分析,判斷是正面、負(fù)面還是中性。以下關(guān)于文本分析方法的選擇,哪一項(xiàng)是最重要的?()A.使用詞袋模型,基于詞頻統(tǒng)計(jì)進(jìn)行分析B.運(yùn)用深度學(xué)習(xí)模型,如卷積神經(jīng)網(wǎng)絡(luò),自動(dòng)提取特征C.借助詞典和規(guī)則,根據(jù)預(yù)定義的情感詞和句式判斷D.隨機(jī)抽取部分評(píng)論進(jìn)行人工分析,以此類(lèi)推整體12、數(shù)據(jù)分析中的決策樹(shù)算法具有易于理解和解釋的特點(diǎn)。假設(shè)我們構(gòu)建了一個(gè)決策樹(shù)來(lái)預(yù)測(cè)客戶(hù)是否會(huì)購(gòu)買(mǎi)某產(chǎn)品,以下哪個(gè)因素可能影響決策樹(shù)的復(fù)雜度和準(zhǔn)確性?()A.特征選擇B.分裂準(zhǔn)則C.剪枝策略D.以上都是13、在數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量問(wèn)題的根源可能來(lái)自多個(gè)方面。以下關(guān)于數(shù)據(jù)質(zhì)量問(wèn)題根源的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)質(zhì)量問(wèn)題可能源于數(shù)據(jù)采集過(guò)程中的錯(cuò)誤和不規(guī)范B.數(shù)據(jù)質(zhì)量問(wèn)題可能由于數(shù)據(jù)存儲(chǔ)和管理不善導(dǎo)致C.數(shù)據(jù)質(zhì)量問(wèn)題可能是由于數(shù)據(jù)分析方法不當(dāng)引起的D.數(shù)據(jù)質(zhì)量問(wèn)題只與數(shù)據(jù)本身有關(guān),與數(shù)據(jù)處理的過(guò)程和人員無(wú)關(guān)14、在進(jìn)行數(shù)據(jù)分析時(shí),若要研究?jī)蓚€(gè)變量之間的線(xiàn)性關(guān)系,通常會(huì)使用哪種統(tǒng)計(jì)方法?()A.方差分析B.回歸分析C.因子分析D.聚類(lèi)分析15、對(duì)于一個(gè)包含大量文本和數(shù)值混合數(shù)據(jù)的數(shù)據(jù)集,以下哪種預(yù)處理方法較為常見(jiàn)?()A.文本向量化B.數(shù)值標(biāo)準(zhǔn)化C.特征工程D.以上都是16、在數(shù)據(jù)分析中,若要檢驗(yàn)數(shù)據(jù)是否來(lái)自于某個(gè)特定的分布,應(yīng)使用哪種檢驗(yàn)方法?()A.卡方擬合優(yōu)度檢驗(yàn)B.Kolmogorov-Smirnov檢驗(yàn)C.Shapiro-Wilk檢驗(yàn)D.以上都是17、在數(shù)據(jù)分析中,選擇合適的統(tǒng)計(jì)量來(lái)描述數(shù)據(jù)的集中趨勢(shì)和離散程度是很重要的。假設(shè)你有一組員工的工資數(shù)據(jù),以下關(guān)于統(tǒng)計(jì)量的選擇,哪一項(xiàng)是最合適的?()A.用中位數(shù)描述集中趨勢(shì),用方差描述離散程度B.用均值描述集中趨勢(shì),用標(biāo)準(zhǔn)差描述離散程度C.用眾數(shù)描述集中趨勢(shì),用極差描述離散程度D.隨機(jī)選擇統(tǒng)計(jì)量,不考慮數(shù)據(jù)的特點(diǎn)18、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣的方法有很多,其中隨機(jī)抽樣是一種常用的方法。以下關(guān)于隨機(jī)抽樣的描述中,錯(cuò)誤的是?()A.隨機(jī)抽樣可以保證樣本的代表性和隨機(jī)性B.隨機(jī)抽樣可以減少數(shù)據(jù)的數(shù)量和復(fù)雜度C.隨機(jī)抽樣可以提高數(shù)據(jù)分析的效率和準(zhǔn)確性D.隨機(jī)抽樣只適用于大規(guī)模數(shù)據(jù)集,對(duì)于小數(shù)據(jù)集無(wú)法使用19、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)和融合時(shí),需要確保數(shù)據(jù)的一致性和準(zhǔn)確性。假設(shè)你有來(lái)自不同系統(tǒng)的銷(xiāo)售數(shù)據(jù)和庫(kù)存數(shù)據(jù),要進(jìn)行關(guān)聯(lián)分析。以下關(guān)于數(shù)據(jù)關(guān)聯(lián)方法的選擇,哪一項(xiàng)是最需要注意的?()A.根據(jù)共同的主鍵或標(biāo)識(shí)符進(jìn)行精確匹配關(guān)聯(lián)B.使用模糊匹配算法,允許一定程度的差異進(jìn)行關(guān)聯(lián)C.不進(jìn)行任何預(yù)處理,直接將數(shù)據(jù)合并,期望自動(dòng)關(guān)聯(lián)D.隨機(jī)選擇一種關(guān)聯(lián)方法,不考慮數(shù)據(jù)的特點(diǎn)20、數(shù)據(jù)分析中的特征工程旨在從原始數(shù)據(jù)中提取有意義的特征。假設(shè)要分析股票市場(chǎng)數(shù)據(jù),需要從歷史價(jià)格、成交量等原始數(shù)據(jù)中構(gòu)建有效的特征。以下哪種特征構(gòu)建方法在股票數(shù)據(jù)分析中可能最為有效?()A.基于時(shí)間序列的特征提取B.基于統(tǒng)計(jì)的特征構(gòu)建C.基于主成分分析的特征降維D.基于深度學(xué)習(xí)的自動(dòng)特征學(xué)習(xí)二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)解釋什么是數(shù)據(jù)挖掘中的分類(lèi)不平衡問(wèn)題,說(shuō)明其對(duì)模型訓(xùn)練的影響,并列舉至少兩種解決分類(lèi)不平衡問(wèn)題的方法。2、(本題5分)簡(jiǎn)述數(shù)據(jù)挖掘中的圖挖掘,包括社交網(wǎng)絡(luò)分析、知識(shí)圖譜等,說(shuō)明其應(yīng)用場(chǎng)景和相關(guān)技術(shù)。3、(本題5分)解釋數(shù)據(jù)可視化中的色彩運(yùn)用原則,說(shuō)明如何選擇合適的色彩來(lái)增強(qiáng)數(shù)據(jù)可視化的效果,并避免色彩誤導(dǎo)。4、(本題5分)描述數(shù)據(jù)挖掘中的層次聚類(lèi)算法的優(yōu)缺點(diǎn)和改進(jìn)方法,并舉例說(shuō)明在客戶(hù)細(xì)分中的應(yīng)用。5、(本題5分)在數(shù)據(jù)分析中,如何進(jìn)行假設(shè)檢驗(yàn)?請(qǐng)說(shuō)明常見(jiàn)的假設(shè)檢驗(yàn)類(lèi)型,如t檢驗(yàn)、方差分析等的適用場(chǎng)景和步驟,并舉例說(shuō)明。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某在線(xiàn)健身平臺(tái)掌握了用戶(hù)的運(yùn)動(dòng)項(xiàng)目選擇、訓(xùn)練計(jì)劃完成情況、飲食記錄等。思考如何通過(guò)這些數(shù)據(jù)為用戶(hù)提供更科學(xué)的健身方案和營(yíng)養(yǎng)建議。2、(本題5分)某在線(xiàn)瑜伽墊銷(xiāo)售平臺(tái)掌握了銷(xiāo)售數(shù)據(jù)、用戶(hù)需求特點(diǎn)、材質(zhì)偏好等。推出更多滿(mǎn)足用戶(hù)需求的瑜伽墊款式和功能。3、(本題5分)某外賣(mài)平臺(tái)存有商家和用戶(hù)的數(shù)據(jù),包括菜品類(lèi)別、銷(xiāo)售額、配送時(shí)間、用戶(hù)評(píng)價(jià)等。分析商家的菜品類(lèi)別與銷(xiāo)售額之間的關(guān)系以及配送時(shí)間對(duì)用戶(hù)評(píng)價(jià)的影響。4、(本題5分)某在線(xiàn)音樂(lè)平臺(tái)掌握了不同音樂(lè)風(fēng)格的收聽(tīng)數(shù)據(jù)、用戶(hù)年齡分布、地域偏好等。思考如何通過(guò)這些數(shù)據(jù)進(jìn)行音樂(lè)版權(quán)采購(gòu)和個(gè)性化推薦優(yōu)化。5、(本題5分)某在線(xiàn)教育平臺(tái)收集了不同年齡段學(xué)生的學(xué)習(xí)行為數(shù)據(jù)、學(xué)習(xí)效果評(píng)估等。研究如何根據(jù)這些數(shù)據(jù)開(kāi)發(fā)適合不同年齡段的課程和教學(xué)方法。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)隨著社交媒體的蓬勃發(fā)展,用戶(hù)生成了大量的文本數(shù)據(jù)。以某知名社交平臺(tái)為例,探討如何運(yùn)用自然語(yǔ)言處理技術(shù)和數(shù)據(jù)分析方法對(duì)這些文本進(jìn)行情感分析,挖掘
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年環(huán)保型內(nèi)燃機(jī)驅(qū)動(dòng)挖掘機(jī)購(gòu)置及售后服務(wù)合同3篇
- 2024建筑領(lǐng)域協(xié)議管理重點(diǎn)解析版B版
- 2025年度辦公場(chǎng)地租賃及辦公設(shè)備租賃合同3篇
- 2024年高品質(zhì)管材與精密管件買(mǎi)賣(mài)標(biāo)準(zhǔn)協(xié)議版B版
- 2024排水工程施工合同正規(guī)范本
- 2025年度專(zhuān)業(yè)保安公司派遣服務(wù)合同范本:定制化安保服務(wù)2篇
- 2025版空壓機(jī)租賃配套空?qǐng)龅厥褂迷S可協(xié)議3篇
- 2024店面房長(zhǎng)期出租合同:包含租賃期店面保險(xiǎn)合同(二零二四年度)3篇帶眉腳
- 2024年貨場(chǎng)試用租賃合同
- 2025版變更撫養(yǎng)權(quán)及子女生活費(fèi)及教育費(fèi)用支付協(xié)議3篇
- 腦卒中偏癱患者早期康復(fù)護(hù)理現(xiàn)狀(一)
- 模特的基礎(chǔ)訓(xùn)練
- 急救技術(shù)-洗胃術(shù) (2)
- 藥品招商流程
- 混凝土配合比檢測(cè)報(bào)告
- 100道遞等式計(jì)算(能巧算得要巧算)
- 【2019年整理】園林景觀設(shè)計(jì)費(fèi)取費(fèi)標(biāo)準(zhǔn)
- 完整word版,ETS5使用教程
- 《血流動(dòng)力學(xué)監(jiān)測(cè)》PPT課件.ppt
- 2018年秋季人教版十一冊(cè)數(shù)學(xué)第7、8單元測(cè)試卷
- 學(xué)生作業(yè)提交與批閱系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)探討
評(píng)論
0/150
提交評(píng)論