版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
「市場風險測量V
\與管理Z
FRMPartIIProgram■基礎班
講師:CrystalGao
e[史由+葉間晞的|hProfQuiomGsvn
TopicWeightingsinFRMPartII
SessionNO.Content%
Session1MarketRiskMeasurementandManagement20
Session2CreditRiskMeasurementandManagement20
Session3OperationalRiskandResiliency20
LiquidityandTreasuryRiskMeasurementand
Session415
Management
Session5RiskManagementandInvestmentManagement15
Session6CurrentIssuesinFinancialMarket10
2-201
行業(yè)?創(chuàng)新?憎值
ModelingDependence:CorrelationsAnd
Copulas
⑥Framework?SomeCorrelationBasics
i?EmpiricalPropertiesofCorrelation
、MarketRiskMeasurement
\/?FinancialCorrelationModeling
andManagement/EmpiricalApproachestoRiskMetricsand
Hedges
TermStructureModelsofInterestRates
?TheScienceofTermStructureModels
rVaRandotherRiskMeasures?TheEvolutionofShortRatesandthe
?ParametricApproachesShapeoftheTermStructure
?Non-parametricApproaches?TheArtofTermStructureModels:
?Semi-parametricApproachesDrift
?Extremevalue?TheArtofTermStructureModels:
,BacktestingVaRVolatilityandDistribution
?VaRNappingVolatilitySmiles
,RiskMeasurementfortheTradingBook
3-201
VaRandotherRiskMeasures
4-201
行業(yè)?創(chuàng)新?憎值
Parametric
.
Approaches
VaRandotherRiskMeasures
5-201
?l.ProfitandLoss
>Profit/Loss
P/L=Pt+Dt-P1
>ArithmeticReturnData:
Pt+Dt—Pt-iPt+Dt
r=-----------------=----------1
tPP
t-it-i
jGeometricReturnData:
P+D
Rt=皿與t-t-)=ln(l+r)
vt
t-i
6-201
行業(yè)?創(chuàng)新?憎值
?l.ProfitandLoss
>Thedifferencebetweenthetworeturnsisnegligiblewhenbothreturnsare
small,butthedifferencegrowsasthereturnsgetbigger-whichistobe
expected,asthegeometricisalogfunctionofthearithmeticreturn.
>Sincewewouldexpectreturnstobelowovershortperiodsandhigher
overlongerperiods,thedifferencebetweenthetwotypesofreturnis
negligibleovershortperiodsbutpotentiallysubstantialoverlongerones.
7-201
行業(yè)?創(chuàng)新?憎值
?2.NormalVaR
>Approach1:NormalVaR
?Weassumethatarithmeticreturnsarenormallydistributedwithmean叩
andstandarddeviationo
VaR=-(n-zaa)VaR=-(|i-ZaO)P.i
-10
Profit(-t-Vloss(-)
8-201
行業(yè)?創(chuàng)新?憎值
?2.NormalVaR
圜>Example:
?Assumethattheprofit/lossdistributionforXYZisnormally
distributedwithanannualmeanof$16millionandastandard
deviationof$11million.CalculatetheVaRatthe95%and99%
confidencelevelsusingaparametricapproach.
VaR(5%)=-$16million+Sllmillionx1.65
=$2.15million
VaR(l%)=-$16million+Sllmillionx2.33
=$9.63million
9-201
行業(yè)?創(chuàng)新?憎值
?3.LognormalVaR
>LognormalVaR
?Assumethatgeometricreturnsarenormallydistributedwithmeanp
andstandarddeviationo.Thisassumptionimpliesthatthenatural
logarithmofPtisnormallydistributed,orthatPtitselfislognormally
distributed.NormallydistributedgeometricreturnsimplythattheVaRis
lognormallydistributed.07
VaR=1-
3
=64
3
zQW
O
VaR=(l-e^?)PJ
d3
t-iO6.
2
-08-06-04-02002040808
Loss(4>Vbrofit(-)
10-201
行業(yè)?創(chuàng)新?憎值
?3.LognormalVaR
圜,Example:
?Adiversifiedportfolioexhibitsanormallydistributedgeometric
returnwithmeanandstandarddeviationof11%and21%,
respectively.Calculatethe5%and1%lognormalVaRassumingthe
beginningperiodportfoliovalueis$100.
LognormalVaR(5%)-100x(1-e011-0-21x1-65)-$21.06
LognormalVaR(l%)=100x(1-e011-0-21x2-33)=$31.57
11-201
行業(yè)?創(chuàng)新?憎值
4.Quantile-QuantilePlots
>Weareinterestedinasking:
?Ifdatalooksrightwhenweuseparametricapproach?
?Whatwedois
JPlotourdataonahistogramandestimatetherelevantsummary
statistics.
/Considerwhatkindofdistributionmightfitourdata.
>Aplotofthequantilesoftheempiricaldistributionagainstthoseofsome
specifieddistribution.TheshapeoftheQQplottellsusalotabouthowthe
>Inparticular,iftheQQplotislinear,thenthespecifieddistributionfitsthe
data,andwehaveidentifiedthedistributiontowhichourdatabelong.
12-201
行業(yè)?創(chuàng)新?憎值
4.Quantile-QuantilePlots
4
3
2
8
=
c
1
cn
b
e-
-2O
d-
E-
山
-1
-2
13-201
行業(yè)?創(chuàng)新?憎值
?4.Quantile-QuantilePlots
-10
Normalquantiles
14-201
行業(yè)?創(chuàng)新?憎值
Non-parametric
Approaches
VaRandotherRiskMeasures
15-201
?l.HistoricalSimulation
>Allnon-parametricapproachesarebasedontheunderlyingassumptionthat
?Withnon-parametricmethods,therearenoproblemsdealingwith
va種甲nce-covarianciematrices,cursesofdimensionality;etc.~
Loss(+)/profit(-)
16-201
行業(yè)?創(chuàng)新?憎值
?l.HistoricalSimulation
>BootstrappedHistoricalSimulation
■Thebootstrapisveryintuitiveaodeasytoapply.
?Wecreatealargenumberofnewsamples,eachobservationofwhichis
obtainedbydrawingatrandomfromouroriginalsampleandreplacing
theobservationafterithasbeendrawn.
?Eachnew'resampled'samplegivesusanewVaRestimate,andwecan
takeour'best'estimatetobethemeanoftheseresample-based
estimates.Thesameapproachcanalsobeusedtoproduceresample-
basedESestimates-eachoneofwhichwouldbetheaverageofthe
lossesineachresampleexceedingtheresampleVaR—andour'best'ES
estimatewouldbethemeanoftheseestimates.
>Abootstrappedestimatewilloftenbemoreaccuratethana'raw'sample
estimate,andbootstrapsarealsousefulforgaugingtheprecisionofour
estimates.
17-201
行業(yè)?創(chuàng)新?憎值
?l.HistoricalSimulation
>DrawbacksofHS
?BasicHShasthepracticaldrawbackthatitonlyallowsustoestimate
VaRsatdiscreteconfidenceintervalsdeterminedbythesizeofourdata
set.
?Forinstance,theVaRatthe95.1%confidencelevelisaproblembecause
thereisnocorrespondinglossobservationtogowithit.
?Withnobservations,basicHSonlyallowsustoestimatetheVaRs
associatedwith,at-best,ndifferentconfidencelevels.
18-201
行業(yè)?創(chuàng)新?憎值
?l.HistoricalSimulation
>Non-parametricDensityEstimation
?Non-paQmetricdensityestimationoffersapotentialsolution.
?Drawinstraightlinesconnectingthemid-pointsatthetopofeach
histogrambar(Polygon).
?Treatingtheareaunderthelinesasapdfthenenablesustoestimate
VaRsatanyconfidencelevel.
(a)Originalhistogram(b)SurrogAfedensin*function
19-201
行業(yè)?創(chuàng)新?憎值
?2.ExpectedShortfall
>TheConditionalVaR(expectedshortfall)
?TheexpectedvalueofthelosswhenitexceedsVaR.
?Measurestheaverageofthelossconditionalonthefactthatitisgreater
thanVaR.
?CVaRindicatesthepotentiallossiftheportfoliois"hit"beyondVaR.
BecauseCVaRisanaverageofthetailloss,onecanshowthatitqualifies
asasubadditiveriskmeasure.
04
3
O.H
^
全o
z
wO.2
a
d
20-201
行業(yè)?創(chuàng)新?憎值
?2.ExpectedShortfall
圜,Example:
?Giventhefollowing30orderedpercentagereturnsofanasset:
-16,-14,-10z-7Z-7Z-5Z-4-—L-L0,0,0,L22Z4Z
6,7,8,9,11,12,12,14,18,21f23.
CalculatetheVaRandexpectedshortfallata90%confidencelevel:
?Solution:
VaR(90%)=7,ExpectedShortfall=13.3
21-201
行業(yè)?創(chuàng)新?憎值
?3.VaRvsES
>VaRcurveandEScurve:plotsofVaRorESagainsttheconfidencelevel.
22-201
行業(yè)?創(chuàng)新?憎值
?3.VaRvsES
>Thelongerthewindow,thesparsertheVaRcurve.
>TheVaRcurveisfairlyunsteady,asitdirectlyreflectstherandomnessof
individuallossobservations,buttheEScurveissmoother,becauseeach
ESisanaverageoftaillosses.
jAstheholdingperiodrises,thenumberofobservationsrapidlyfalls,
andwesoonfindthatwedon'thaveenoughdata.
>Evenifwehadaverylongrunofdata,theolderobservationsmight
haveverylittlerelevanceforcurrentmarketconditions.
23-201
行業(yè)?創(chuàng)新?憎值
?4.A/DofNon-parametricMethods
>Advantages
?Intuitiveandconceptuallysimple;
?Donotdependonparametricassumptions;
?Accommodateanytypeofposition;
?Noneedforcovariancematrices,nocursesofdimensionality;
?Usedatathatare(often)readilyavailable;
?Arecapableofconsiderablerefinementandpotentialimprovementif
wecombinethemwithparametric“add-ons“tomakethemsemi-
parametric.
24-201
行業(yè)?創(chuàng)新?憎值
?4.A/DofNon-parametricMethods
>Disadvantages
?Verydependentonthehistoricaldataset;
?Subjecttoghosteffect;
?Ifourdataperiodwasunusuallyquiet,non-parametricmethodswill
oftenproduceVaRorESestimatesthataretoolowfortheriskwe
actuallyfacing,viceversa;
?Havedifficulty(actslowly)handlingsh+fe(permanentriskchange)that
takeplaceduringoursampleperiod;
25-201
行業(yè)?創(chuàng)新?憎值
?4.A/DofNon-parametricMethods
?Havedifficultyhandlingextremevalue
/Ifourdatasetincorporatesextremelossesthatareunlikelytorecur,
theselossescandominatenon-parametricriskestimateseven
thoughwedon'texpectthemtorecur;
JMakenoallowanceforplausibleeventsthatmightoccur,butdid
notactuallyoccur,inoursampleperiod.
26-201
行業(yè)?創(chuàng)新?憎值
?4.A/DofNon-parametricMethods
>ProblemsfromLongWindow
?Thelongerthewindow:
/Thegreatertheproblemswithageddata;
?Thelongertheperiodoverwhichresultswillbedistortedby
unlikely-to-recurpastevents,andthelongerwewillhavetowaitfo『
/Themorethenewsincurrentmarketobservationsislikelytobe
drownedoutbyolderobservations;
/Thegreaterthepotentialfordata-<olleetioA-problems.
27-201
行業(yè)?創(chuàng)新?憎值
?5.CoherentRiskMeasures
>Acoherentriskmeasureisaweightedaverageofthequantilesofour
lossdistribution.
1
0=I0(P)P
0
?①(p)=weighingfunctionspecifiedbytheuser.
>ExponentialWeightingFunction
-(i-)/
J:thedegreeofourrisk-aversion
28-201
行業(yè)?創(chuàng)新?憎值
?5.CoherentRiskMeasures
jEstimatingexponentialspectralriskmeasuresasaweightedaverageof
VaRs(=0.05)
ConfidencelevelWeight
aVaR<P(a)xaVaR
(a)ct)(a)
10%-1.281600.0000
20%-0.841600.0000
30%-0.524400.0000
40%-0.25330.00010.0000
50%00.00090.0000
60%0.25330.00670.0017
70%0.52440.04960.0260
80%0.84160.36630.3083
90%1.28162.70673.4689
Riskmeasure=mean(0(a)timesaVaR)0.4226
29-201
行業(yè)?創(chuàng)新?憎值
?5.CoherentRiskMeasures
>Theestimatedoeseventuallyconvergetothetruevalueasngetslarge.
Estimatesofexponentialspectralcoherentrisk
measureasafunctionofthenumberoftailslices
Estimateofexponential
Numberoftailslices
spectralriskmeasure
100.4227
501.3739
1001.5853
5001.7896
10001.8197
50001.8461
10,0001.8498
50,0001.8529
100,0001.8533
500,0001.8536
30-201
行業(yè)?創(chuàng)新?憎值
Semi-parametric
Approaches
VaRandotherRiskMeasures
31-201
?l.Age-weightedHistoricalSimulation
>OnereturnobservationwillaffecteachoftheFieKW^-ebsewatieRS-inourP/L
series.Butafternperiodshavepassed,theobservationwillfalloutofthe
datasetusedtocalculatethecurrentHSP/Lseries,andwillthereafterhave
noeffectonP/L.
>Thisweightingstructurehasanumberofproblems.
?Oneproblemisthatit
samplepeHodthesameweight.
?Theequal-weightapproachcanalsomakeriskestimatesunresponsive
tomajorevents.
?Theequal-weightstructurealsopresumesthateachobservationinthe
sampleperiodisequallylikelyandindependentoftheothersovertime.
However,this'iid'assumptionisunrealistic.
32-201
行業(yè)?創(chuàng)新?憎值
?l.Age-weightedHistoricalSimulation
?Itisalsohardtojustifywhyanobservationshouldhaveaweightthat
suddenlygoestozerowhenitreachesagen.
?Ghosteffects
/wecanhaveaVaRthatisundulyhigh(orlow)becauseofasmall
clusterofhighlossobservations,orevenjustasinglehighloss,and
themeasuredVaRwillcontinuetobehigh(orlow)untilndaysorso
havepassedandtheobservationhasfallenoutofthesampleperiod.
33-201
行業(yè)?創(chuàng)新?憎值
?l.Age-weightedHistoricalSimulation
>Boudoukh,RichardsonandWhitelaw(BRW:1998)
?w⑴istheprobabilityweightgiventoanobservation1dayold.
?A入closeto1indicatesaslowrateofdecay,anda入farawayfrom1
indicatesahighrateofdecay.
A3(x)1A2(JO1入313]
|J4M3M21
入1(1—入|
3⑴+入3⑴+,?,+入吁1(x)(])=1T3。)=一二J
34-201
行業(yè)?創(chuàng)新?憎值
?l.Age-weightedHistoricalSimulation
>Majorattractions
?ItprovidesanicegeneralizationoftraditionalHS,becausewecan
regardtraditional屋asewithzerodecay,or入11.
?AlargelosseventwillreceiveahigherweightthanundertraditionalHSZ
andtheresultingnext-dayVaRwouldbehigherthanitwouldotherwise
havebeen.
?Helpstoreducedistortionscausedbyeventsthatareunlikelytorecur,
andhelpstoreduce
/Asanobservationages,itsprobabilityweightgraduallyfallsandits
influencediminishesgraduallyovertime.Whenitfinallyfallsoutof
thesampleperiod,itsweightwillfallfrom入MQ)tozero,insteadof
from1/ntozero.
35-201
行業(yè)?創(chuàng)新?憎值
?l.Age-weightedHistoricalSimulation
>Majorattractions
■Age-weightingallowsus
observation,soweneverthrowpotentiallyvaluableinformationaway.
Thiswouldimproveefficiencyandeliminateghosteffects,becausethere
wouldnolongerbeany“jumps"inoursampleresultingfromold
observationsbeingthrownaway.
36-201
行業(yè)?創(chuàng)新?憎值
?2.Volatility-weightedHistoricalSimulation
>HullandWhite(HW1998)
?WeadjustthehistoHcalretumstoreflecthowvolatilitytomorrowis
believedtohavechangedfromitspastvalues.
/rti=actualreturnforassetiondayt
Jat>i=volatilityforecastforassetiondayt
/aTi=currentforecastofvolatilityforasseti
37-201
行業(yè)?創(chuàng)新?憎值
?2.Volatility-weightedHistoricalSimulation
>Majorattractions
?Ittakesaccountofvolatilitychangesinanaturalanddirectway.
?Itproducesriskestimatesthatareappropriatelyseroitive4G-WTOfrt
volatilityestimates.
?ItallowsustoobtainVaRandESestimatesthatcanexceedthe
maximumlossinourhistoricaldataset.
/Inrecentperiodsofhighvolatility,historicalreturnsarescaled
upwards,andtheHSP/LseriesusedintheHWprocedurewillhave
valuesthatexceedactualhistoricallosses.
?ProducessuperiorVaRestimatestotheBRWone.
38-201
行業(yè)?創(chuàng)新?憎值
?3.Correlation-weightedhistoricalsimulation
>Correlation-weightedhistoricalsimulation
?Correlation-weightingisalittlemoreinvolvedthanvolatility-weighting.
?Toseetheprinciplesinvolved,supposeforthesakeofargumentthatwe
havealreadymadeanyvolatility-basedadjustmentstoourHSreturns
alongHull-Whitelines,butalsowishtoadjustthosereturnstoreflect
changesincorrelations.
39-201
行業(yè)?創(chuàng)新?憎值
?4?Filteredhistoricalsimulation
,Filteredhistoricalsimulation(FHS)
?CombineshistoricalsimulationmodelwithGARCHorAGARCHmodel.
>Thestepsareasfollows:
?Firstly,usethehistoricalreturntofindanysurpriseandthusreproduce
volatilitywithGARCHorAGARCHmodel.
?Secondly,thesevolatilityforecastsarethendividedintotherealized
returnstoproduceasetofstandardizedreturns,whichisLED..
?Thethirdstageinvolvesbootstrappingfromthesetofstandardized
returns.
?Finally,eachofthesesimulatedreturnsgivesusapossibleend-of-
tomorrowportfoliovalue,andacorrespondingpossibleloss,andwe
taketheVaRtobethelosscorrespondingtoourchosenconfidence
level.
40-201
行業(yè)?創(chuàng)新?憎值
?4?Filteredhistoricalsimulation
>Majorattractions
?Combinethenon-parametricattractionsofHSwithasophisticated(eg,
GARCH)treatmentofvolatility,andsotakeaccountofchangingmarket
?Itisfest,evenforlargeportfolios
estimatesthatcanexceedthemaximumhistoricallossinousdataset.
?Itmaintainsthecoirelationstructureinourreturn
?Itcanbemodifiedtotakeaccountofautocorrelationsinassetreturns
?ItcanbemodifiedtoproduceestimatesofVaRorESconfidence
intervals.
?ThereisevidencethatFHSworkswell.
41-201
行業(yè)?創(chuàng)新?憎值
Extremevalue
VaRandotherRiskMeasures
42-201
?l.Introduction
“Thefitteddistributionwilltendtoaccommodatethemorecentral
observations,ratherthantheextremeobservations,whicharemuch
sparser.
>Theestimationoftherisksassociatedwithlowfrequencyeventswithlimited
dataisinevitablyproblematic.
>Extreme-valuetheory(EVT):
?Centraltendencystatisticsaregovernedbycentrallimittheorems,but
centrallimittheoremsdonotapplytoextremes.Instead,extremesare
governedbyextreme-valuetheorems.
43-201
行業(yè)?創(chuàng)新?憎值
?2.GeneralizedExtremeValueDistribution
>SupposewehavearandomlossvariableXzandweassumetobeginwith
thatXisindependentandidenticallydistributed(iid)fromsomeunknown
distribution.ConsiderasampleofsizendrawnfromF(x)zandletthe
maximumofthissamplebeMnIfnislarge,wecanregardMnasanextreme
value.
>Underrelativelygeneralconditions,thecelebratedFisher-Tippetttheorem
thentellsusthatasngetslarge,thedistributionofextremes(i.e.zMn
convergestothefollowinggeneralizedextreme-value(GEV)distribution:
44-201
行業(yè)?創(chuàng)新?憎值
?2.GeneralizedExtremeValueDistribution
>Thisdistributionhasthreeparameters.
x-U—x
exp[-(1+m丁)刃,"0
F(x)=Ix°_
exp[-exp(-----=0
r“thelocationparameterofthelimitingdistribution,whichisameasureofthe
centraltendencyofMn.
r,thescaleparameterofthelimitingdistribution,whichisameasureofthe
dispersionofMn.
r,thetailindex,givesanindicationoftheshape(orheaviness)ofthetailofthe
limitingdistribution.
?When5>0:Frechetdistribution,heavytails,I次et-dist,Paretodist.
?When5=0:Gumbeldistribution,lighttails,likenormalorlognormaldist.
■When5<0:Weibulldistribution,verylighttails,notusefulformodelling
financialreturns.
45-201
行業(yè)?創(chuàng)新?憎值
?2.GeneralizedExtremeValueDistribution
三
S
U
E
>
三
q一
R
q
o
」
d
46-201
行業(yè)?創(chuàng)新?憎值
?2.GeneralizedExtremeValueDistribution
>HowdowechoosebetweentheGumbelandtheFrechet?
?WechoosetheEVdistributiontowhichtheextremesfromtheparent
distributionwilltend.
?Wecouldtestthesignificanceofthetailindex,andwemightchoose
theGumbelifthetailindexwasinsignificantandtheFrechetotherwise.
?Giventhedangersofmodelrisk,theestimatedriskmeasureincreases
withthetailindex,asaferoptionisalwaystochoosetheFrechet.
47-201
行業(yè)?創(chuàng)新?憎值
?2.GeneralizedExtremeValueDistribution
>EstimationofEVP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖南省衡陽市八中學2025屆中考生物五模試卷含解析
- 遼寧政法職業(yè)學院《學術(shù)寫作訓練》2023-2024學年第一學期期末試卷
- 二零二五版護士護理知識產(chǎn)權(quán)保護聘用合同規(guī)范3篇
- 遼寧師范大學《土力學與土質(zhì)學》2023-2024學年第一學期期末試卷
- 二零二五年度金融產(chǎn)品推廣合作協(xié)議3篇
- 商業(yè)綜合體商鋪出租管理合同(二零二五年版)2篇
- 2025年上半年通遼奈曼旗蘇木鄉(xiāng)鎮(zhèn)事業(yè)單位公開招聘117名工作人員易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年上半年遼寧省錦州市群眾訴求服務系統(tǒng)平臺招聘易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年上半年遼寧沈陽沈河區(qū)殘疾人工作專職干事招錄8人易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年上半年遼寧撫順市體育事業(yè)發(fā)展中心招聘高層次教練員2人易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年度土地經(jīng)營權(quán)流轉(zhuǎn)合同補充條款范本
- 南通市2025屆高三第一次調(diào)研測試(一模)地理試卷(含答案 )
- 2025年上海市閔行區(qū)中考數(shù)學一模試卷
- 2025中國人民保險集團校園招聘高頻重點提升(共500題)附帶答案詳解
- 0的認識和加、減法(說課稿)-2024-2025學年一年級上冊數(shù)學人教版(2024)001
- Python試題庫(附參考答案)
- DB32T 3960-2020 抗水性自修復穩(wěn)定土基層施工技術(shù)規(guī)范
- 說明書hid500系列變頻調(diào)速器使用說明書s1.1(1)
- 大斷面隧道設計技術(shù)基本原理
- 41某31層框架結(jié)構(gòu)住宅預算書工程概算表
- 成都市國土資源局關(guān)于加強國有建設用地土地用途變更和
評論
0/150
提交評論