FRM二級培訓項目:市場風險測量與管理(閱讀版)_第1頁
FRM二級培訓項目:市場風險測量與管理(閱讀版)_第2頁
FRM二級培訓項目:市場風險測量與管理(閱讀版)_第3頁
FRM二級培訓項目:市場風險測量與管理(閱讀版)_第4頁
FRM二級培訓項目:市場風險測量與管理(閱讀版)_第5頁
已閱讀5頁,還剩195頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

「市場風險測量V

\與管理Z

FRMPartIIProgram■基礎班

講師:CrystalGao

e[史由+葉間晞的|hProfQuiomGsvn

TopicWeightingsinFRMPartII

SessionNO.Content%

Session1MarketRiskMeasurementandManagement20

Session2CreditRiskMeasurementandManagement20

Session3OperationalRiskandResiliency20

LiquidityandTreasuryRiskMeasurementand

Session415

Management

Session5RiskManagementandInvestmentManagement15

Session6CurrentIssuesinFinancialMarket10

2-201

行業(yè)?創(chuàng)新?憎值

ModelingDependence:CorrelationsAnd

Copulas

⑥Framework?SomeCorrelationBasics

i?EmpiricalPropertiesofCorrelation

、MarketRiskMeasurement

\/?FinancialCorrelationModeling

andManagement/EmpiricalApproachestoRiskMetricsand

Hedges

TermStructureModelsofInterestRates

?TheScienceofTermStructureModels

rVaRandotherRiskMeasures?TheEvolutionofShortRatesandthe

?ParametricApproachesShapeoftheTermStructure

?Non-parametricApproaches?TheArtofTermStructureModels:

?Semi-parametricApproachesDrift

?Extremevalue?TheArtofTermStructureModels:

,BacktestingVaRVolatilityandDistribution

?VaRNappingVolatilitySmiles

,RiskMeasurementfortheTradingBook

3-201

VaRandotherRiskMeasures

4-201

行業(yè)?創(chuàng)新?憎值

Parametric

.

Approaches

VaRandotherRiskMeasures

5-201

?l.ProfitandLoss

>Profit/Loss

P/L=Pt+Dt-P1

>ArithmeticReturnData:

Pt+Dt—Pt-iPt+Dt

r=-----------------=----------1

tPP

t-it-i

jGeometricReturnData:

P+D

Rt=皿與t-t-)=ln(l+r)

vt

t-i

6-201

行業(yè)?創(chuàng)新?憎值

?l.ProfitandLoss

>Thedifferencebetweenthetworeturnsisnegligiblewhenbothreturnsare

small,butthedifferencegrowsasthereturnsgetbigger-whichistobe

expected,asthegeometricisalogfunctionofthearithmeticreturn.

>Sincewewouldexpectreturnstobelowovershortperiodsandhigher

overlongerperiods,thedifferencebetweenthetwotypesofreturnis

negligibleovershortperiodsbutpotentiallysubstantialoverlongerones.

7-201

行業(yè)?創(chuàng)新?憎值

?2.NormalVaR

>Approach1:NormalVaR

?Weassumethatarithmeticreturnsarenormallydistributedwithmean叩

andstandarddeviationo

VaR=-(n-zaa)VaR=-(|i-ZaO)P.i

-10

Profit(-t-Vloss(-)

8-201

行業(yè)?創(chuàng)新?憎值

?2.NormalVaR

圜>Example:

?Assumethattheprofit/lossdistributionforXYZisnormally

distributedwithanannualmeanof$16millionandastandard

deviationof$11million.CalculatetheVaRatthe95%and99%

confidencelevelsusingaparametricapproach.

VaR(5%)=-$16million+Sllmillionx1.65

=$2.15million

VaR(l%)=-$16million+Sllmillionx2.33

=$9.63million

9-201

行業(yè)?創(chuàng)新?憎值

?3.LognormalVaR

>LognormalVaR

?Assumethatgeometricreturnsarenormallydistributedwithmeanp

andstandarddeviationo.Thisassumptionimpliesthatthenatural

logarithmofPtisnormallydistributed,orthatPtitselfislognormally

distributed.NormallydistributedgeometricreturnsimplythattheVaRis

lognormallydistributed.07

VaR=1-

3

=64

3

zQW

O

VaR=(l-e^?)PJ

d3

t-iO6.

2

-08-06-04-02002040808

Loss(4>Vbrofit(-)

10-201

行業(yè)?創(chuàng)新?憎值

?3.LognormalVaR

圜,Example:

?Adiversifiedportfolioexhibitsanormallydistributedgeometric

returnwithmeanandstandarddeviationof11%and21%,

respectively.Calculatethe5%and1%lognormalVaRassumingthe

beginningperiodportfoliovalueis$100.

LognormalVaR(5%)-100x(1-e011-0-21x1-65)-$21.06

LognormalVaR(l%)=100x(1-e011-0-21x2-33)=$31.57

11-201

行業(yè)?創(chuàng)新?憎值

4.Quantile-QuantilePlots

>Weareinterestedinasking:

?Ifdatalooksrightwhenweuseparametricapproach?

?Whatwedois

JPlotourdataonahistogramandestimatetherelevantsummary

statistics.

/Considerwhatkindofdistributionmightfitourdata.

>Aplotofthequantilesoftheempiricaldistributionagainstthoseofsome

specifieddistribution.TheshapeoftheQQplottellsusalotabouthowthe

>Inparticular,iftheQQplotislinear,thenthespecifieddistributionfitsthe

data,andwehaveidentifiedthedistributiontowhichourdatabelong.

12-201

行業(yè)?創(chuàng)新?憎值

4.Quantile-QuantilePlots

4

3

2

8

=

c

1

cn

b

e-

-2O

d-

E-

-1

-2

13-201

行業(yè)?創(chuàng)新?憎值

?4.Quantile-QuantilePlots

-10

Normalquantiles

14-201

行業(yè)?創(chuàng)新?憎值

Non-parametric

Approaches

VaRandotherRiskMeasures

15-201

?l.HistoricalSimulation

>Allnon-parametricapproachesarebasedontheunderlyingassumptionthat

?Withnon-parametricmethods,therearenoproblemsdealingwith

va種甲nce-covarianciematrices,cursesofdimensionality;etc.~

Loss(+)/profit(-)

16-201

行業(yè)?創(chuàng)新?憎值

?l.HistoricalSimulation

>BootstrappedHistoricalSimulation

■Thebootstrapisveryintuitiveaodeasytoapply.

?Wecreatealargenumberofnewsamples,eachobservationofwhichis

obtainedbydrawingatrandomfromouroriginalsampleandreplacing

theobservationafterithasbeendrawn.

?Eachnew'resampled'samplegivesusanewVaRestimate,andwecan

takeour'best'estimatetobethemeanoftheseresample-based

estimates.Thesameapproachcanalsobeusedtoproduceresample-

basedESestimates-eachoneofwhichwouldbetheaverageofthe

lossesineachresampleexceedingtheresampleVaR—andour'best'ES

estimatewouldbethemeanoftheseestimates.

>Abootstrappedestimatewilloftenbemoreaccuratethana'raw'sample

estimate,andbootstrapsarealsousefulforgaugingtheprecisionofour

estimates.

17-201

行業(yè)?創(chuàng)新?憎值

?l.HistoricalSimulation

>DrawbacksofHS

?BasicHShasthepracticaldrawbackthatitonlyallowsustoestimate

VaRsatdiscreteconfidenceintervalsdeterminedbythesizeofourdata

set.

?Forinstance,theVaRatthe95.1%confidencelevelisaproblembecause

thereisnocorrespondinglossobservationtogowithit.

?Withnobservations,basicHSonlyallowsustoestimatetheVaRs

associatedwith,at-best,ndifferentconfidencelevels.

18-201

行業(yè)?創(chuàng)新?憎值

?l.HistoricalSimulation

>Non-parametricDensityEstimation

?Non-paQmetricdensityestimationoffersapotentialsolution.

?Drawinstraightlinesconnectingthemid-pointsatthetopofeach

histogrambar(Polygon).

?Treatingtheareaunderthelinesasapdfthenenablesustoestimate

VaRsatanyconfidencelevel.

(a)Originalhistogram(b)SurrogAfedensin*function

19-201

行業(yè)?創(chuàng)新?憎值

?2.ExpectedShortfall

>TheConditionalVaR(expectedshortfall)

?TheexpectedvalueofthelosswhenitexceedsVaR.

?Measurestheaverageofthelossconditionalonthefactthatitisgreater

thanVaR.

?CVaRindicatesthepotentiallossiftheportfoliois"hit"beyondVaR.

BecauseCVaRisanaverageofthetailloss,onecanshowthatitqualifies

asasubadditiveriskmeasure.

04

3

O.H

^

全o

z

wO.2

a

d

20-201

行業(yè)?創(chuàng)新?憎值

?2.ExpectedShortfall

圜,Example:

?Giventhefollowing30orderedpercentagereturnsofanasset:

-16,-14,-10z-7Z-7Z-5Z-4-—L-L0,0,0,L22Z4Z

6,7,8,9,11,12,12,14,18,21f23.

CalculatetheVaRandexpectedshortfallata90%confidencelevel:

?Solution:

VaR(90%)=7,ExpectedShortfall=13.3

21-201

行業(yè)?創(chuàng)新?憎值

?3.VaRvsES

>VaRcurveandEScurve:plotsofVaRorESagainsttheconfidencelevel.

22-201

行業(yè)?創(chuàng)新?憎值

?3.VaRvsES

>Thelongerthewindow,thesparsertheVaRcurve.

>TheVaRcurveisfairlyunsteady,asitdirectlyreflectstherandomnessof

individuallossobservations,buttheEScurveissmoother,becauseeach

ESisanaverageoftaillosses.

jAstheholdingperiodrises,thenumberofobservationsrapidlyfalls,

andwesoonfindthatwedon'thaveenoughdata.

>Evenifwehadaverylongrunofdata,theolderobservationsmight

haveverylittlerelevanceforcurrentmarketconditions.

23-201

行業(yè)?創(chuàng)新?憎值

?4.A/DofNon-parametricMethods

>Advantages

?Intuitiveandconceptuallysimple;

?Donotdependonparametricassumptions;

?Accommodateanytypeofposition;

?Noneedforcovariancematrices,nocursesofdimensionality;

?Usedatathatare(often)readilyavailable;

?Arecapableofconsiderablerefinementandpotentialimprovementif

wecombinethemwithparametric“add-ons“tomakethemsemi-

parametric.

24-201

行業(yè)?創(chuàng)新?憎值

?4.A/DofNon-parametricMethods

>Disadvantages

?Verydependentonthehistoricaldataset;

?Subjecttoghosteffect;

?Ifourdataperiodwasunusuallyquiet,non-parametricmethodswill

oftenproduceVaRorESestimatesthataretoolowfortheriskwe

actuallyfacing,viceversa;

?Havedifficulty(actslowly)handlingsh+fe(permanentriskchange)that

takeplaceduringoursampleperiod;

25-201

行業(yè)?創(chuàng)新?憎值

?4.A/DofNon-parametricMethods

?Havedifficultyhandlingextremevalue

/Ifourdatasetincorporatesextremelossesthatareunlikelytorecur,

theselossescandominatenon-parametricriskestimateseven

thoughwedon'texpectthemtorecur;

JMakenoallowanceforplausibleeventsthatmightoccur,butdid

notactuallyoccur,inoursampleperiod.

26-201

行業(yè)?創(chuàng)新?憎值

?4.A/DofNon-parametricMethods

>ProblemsfromLongWindow

?Thelongerthewindow:

/Thegreatertheproblemswithageddata;

?Thelongertheperiodoverwhichresultswillbedistortedby

unlikely-to-recurpastevents,andthelongerwewillhavetowaitfo『

/Themorethenewsincurrentmarketobservationsislikelytobe

drownedoutbyolderobservations;

/Thegreaterthepotentialfordata-<olleetioA-problems.

27-201

行業(yè)?創(chuàng)新?憎值

?5.CoherentRiskMeasures

>Acoherentriskmeasureisaweightedaverageofthequantilesofour

lossdistribution.

1

0=I0(P)P

0

?①(p)=weighingfunctionspecifiedbytheuser.

>ExponentialWeightingFunction

-(i-)/

J:thedegreeofourrisk-aversion

28-201

行業(yè)?創(chuàng)新?憎值

?5.CoherentRiskMeasures

jEstimatingexponentialspectralriskmeasuresasaweightedaverageof

VaRs(=0.05)

ConfidencelevelWeight

aVaR<P(a)xaVaR

(a)ct)(a)

10%-1.281600.0000

20%-0.841600.0000

30%-0.524400.0000

40%-0.25330.00010.0000

50%00.00090.0000

60%0.25330.00670.0017

70%0.52440.04960.0260

80%0.84160.36630.3083

90%1.28162.70673.4689

Riskmeasure=mean(0(a)timesaVaR)0.4226

29-201

行業(yè)?創(chuàng)新?憎值

?5.CoherentRiskMeasures

>Theestimatedoeseventuallyconvergetothetruevalueasngetslarge.

Estimatesofexponentialspectralcoherentrisk

measureasafunctionofthenumberoftailslices

Estimateofexponential

Numberoftailslices

spectralriskmeasure

100.4227

501.3739

1001.5853

5001.7896

10001.8197

50001.8461

10,0001.8498

50,0001.8529

100,0001.8533

500,0001.8536

30-201

行業(yè)?創(chuàng)新?憎值

Semi-parametric

Approaches

VaRandotherRiskMeasures

31-201

?l.Age-weightedHistoricalSimulation

>OnereturnobservationwillaffecteachoftheFieKW^-ebsewatieRS-inourP/L

series.Butafternperiodshavepassed,theobservationwillfalloutofthe

datasetusedtocalculatethecurrentHSP/Lseries,andwillthereafterhave

noeffectonP/L.

>Thisweightingstructurehasanumberofproblems.

?Oneproblemisthatit

samplepeHodthesameweight.

?Theequal-weightapproachcanalsomakeriskestimatesunresponsive

tomajorevents.

?Theequal-weightstructurealsopresumesthateachobservationinthe

sampleperiodisequallylikelyandindependentoftheothersovertime.

However,this'iid'assumptionisunrealistic.

32-201

行業(yè)?創(chuàng)新?憎值

?l.Age-weightedHistoricalSimulation

?Itisalsohardtojustifywhyanobservationshouldhaveaweightthat

suddenlygoestozerowhenitreachesagen.

?Ghosteffects

/wecanhaveaVaRthatisundulyhigh(orlow)becauseofasmall

clusterofhighlossobservations,orevenjustasinglehighloss,and

themeasuredVaRwillcontinuetobehigh(orlow)untilndaysorso

havepassedandtheobservationhasfallenoutofthesampleperiod.

33-201

行業(yè)?創(chuàng)新?憎值

?l.Age-weightedHistoricalSimulation

>Boudoukh,RichardsonandWhitelaw(BRW:1998)

?w⑴istheprobabilityweightgiventoanobservation1dayold.

?A入closeto1indicatesaslowrateofdecay,anda入farawayfrom1

indicatesahighrateofdecay.

A3(x)1A2(JO1入313]

|J4M3M21

入1(1—入|

3⑴+入3⑴+,?,+入吁1(x)(])=1T3。)=一二J

34-201

行業(yè)?創(chuàng)新?憎值

?l.Age-weightedHistoricalSimulation

>Majorattractions

?ItprovidesanicegeneralizationoftraditionalHS,becausewecan

regardtraditional屋asewithzerodecay,or入11.

?AlargelosseventwillreceiveahigherweightthanundertraditionalHSZ

andtheresultingnext-dayVaRwouldbehigherthanitwouldotherwise

havebeen.

?Helpstoreducedistortionscausedbyeventsthatareunlikelytorecur,

andhelpstoreduce

/Asanobservationages,itsprobabilityweightgraduallyfallsandits

influencediminishesgraduallyovertime.Whenitfinallyfallsoutof

thesampleperiod,itsweightwillfallfrom入MQ)tozero,insteadof

from1/ntozero.

35-201

行業(yè)?創(chuàng)新?憎值

?l.Age-weightedHistoricalSimulation

>Majorattractions

■Age-weightingallowsus

observation,soweneverthrowpotentiallyvaluableinformationaway.

Thiswouldimproveefficiencyandeliminateghosteffects,becausethere

wouldnolongerbeany“jumps"inoursampleresultingfromold

observationsbeingthrownaway.

36-201

行業(yè)?創(chuàng)新?憎值

?2.Volatility-weightedHistoricalSimulation

>HullandWhite(HW1998)

?WeadjustthehistoHcalretumstoreflecthowvolatilitytomorrowis

believedtohavechangedfromitspastvalues.

/rti=actualreturnforassetiondayt

Jat>i=volatilityforecastforassetiondayt

/aTi=currentforecastofvolatilityforasseti

37-201

行業(yè)?創(chuàng)新?憎值

?2.Volatility-weightedHistoricalSimulation

>Majorattractions

?Ittakesaccountofvolatilitychangesinanaturalanddirectway.

?Itproducesriskestimatesthatareappropriatelyseroitive4G-WTOfrt

volatilityestimates.

?ItallowsustoobtainVaRandESestimatesthatcanexceedthe

maximumlossinourhistoricaldataset.

/Inrecentperiodsofhighvolatility,historicalreturnsarescaled

upwards,andtheHSP/LseriesusedintheHWprocedurewillhave

valuesthatexceedactualhistoricallosses.

?ProducessuperiorVaRestimatestotheBRWone.

38-201

行業(yè)?創(chuàng)新?憎值

?3.Correlation-weightedhistoricalsimulation

>Correlation-weightedhistoricalsimulation

?Correlation-weightingisalittlemoreinvolvedthanvolatility-weighting.

?Toseetheprinciplesinvolved,supposeforthesakeofargumentthatwe

havealreadymadeanyvolatility-basedadjustmentstoourHSreturns

alongHull-Whitelines,butalsowishtoadjustthosereturnstoreflect

changesincorrelations.

39-201

行業(yè)?創(chuàng)新?憎值

?4?Filteredhistoricalsimulation

,Filteredhistoricalsimulation(FHS)

?CombineshistoricalsimulationmodelwithGARCHorAGARCHmodel.

>Thestepsareasfollows:

?Firstly,usethehistoricalreturntofindanysurpriseandthusreproduce

volatilitywithGARCHorAGARCHmodel.

?Secondly,thesevolatilityforecastsarethendividedintotherealized

returnstoproduceasetofstandardizedreturns,whichisLED..

?Thethirdstageinvolvesbootstrappingfromthesetofstandardized

returns.

?Finally,eachofthesesimulatedreturnsgivesusapossibleend-of-

tomorrowportfoliovalue,andacorrespondingpossibleloss,andwe

taketheVaRtobethelosscorrespondingtoourchosenconfidence

level.

40-201

行業(yè)?創(chuàng)新?憎值

?4?Filteredhistoricalsimulation

>Majorattractions

?Combinethenon-parametricattractionsofHSwithasophisticated(eg,

GARCH)treatmentofvolatility,andsotakeaccountofchangingmarket

?Itisfest,evenforlargeportfolios

estimatesthatcanexceedthemaximumhistoricallossinousdataset.

?Itmaintainsthecoirelationstructureinourreturn

?Itcanbemodifiedtotakeaccountofautocorrelationsinassetreturns

?ItcanbemodifiedtoproduceestimatesofVaRorESconfidence

intervals.

?ThereisevidencethatFHSworkswell.

41-201

行業(yè)?創(chuàng)新?憎值

Extremevalue

VaRandotherRiskMeasures

42-201

?l.Introduction

“Thefitteddistributionwilltendtoaccommodatethemorecentral

observations,ratherthantheextremeobservations,whicharemuch

sparser.

>Theestimationoftherisksassociatedwithlowfrequencyeventswithlimited

dataisinevitablyproblematic.

>Extreme-valuetheory(EVT):

?Centraltendencystatisticsaregovernedbycentrallimittheorems,but

centrallimittheoremsdonotapplytoextremes.Instead,extremesare

governedbyextreme-valuetheorems.

43-201

行業(yè)?創(chuàng)新?憎值

?2.GeneralizedExtremeValueDistribution

>SupposewehavearandomlossvariableXzandweassumetobeginwith

thatXisindependentandidenticallydistributed(iid)fromsomeunknown

distribution.ConsiderasampleofsizendrawnfromF(x)zandletthe

maximumofthissamplebeMnIfnislarge,wecanregardMnasanextreme

value.

>Underrelativelygeneralconditions,thecelebratedFisher-Tippetttheorem

thentellsusthatasngetslarge,thedistributionofextremes(i.e.zMn

convergestothefollowinggeneralizedextreme-value(GEV)distribution:

44-201

行業(yè)?創(chuàng)新?憎值

?2.GeneralizedExtremeValueDistribution

>Thisdistributionhasthreeparameters.

x-U—x

exp[-(1+m丁)刃,"0

F(x)=Ix°_

exp[-exp(-----=0

r“thelocationparameterofthelimitingdistribution,whichisameasureofthe

centraltendencyofMn.

r,thescaleparameterofthelimitingdistribution,whichisameasureofthe

dispersionofMn.

r,thetailindex,givesanindicationoftheshape(orheaviness)ofthetailofthe

limitingdistribution.

?When5>0:Frechetdistribution,heavytails,I次et-dist,Paretodist.

?When5=0:Gumbeldistribution,lighttails,likenormalorlognormaldist.

■When5<0:Weibulldistribution,verylighttails,notusefulformodelling

financialreturns.

45-201

行業(yè)?創(chuàng)新?憎值

?2.GeneralizedExtremeValueDistribution

S

U

E

>

q一

R

q

o

d

46-201

行業(yè)?創(chuàng)新?憎值

?2.GeneralizedExtremeValueDistribution

>HowdowechoosebetweentheGumbelandtheFrechet?

?WechoosetheEVdistributiontowhichtheextremesfromtheparent

distributionwilltend.

?Wecouldtestthesignificanceofthetailindex,andwemightchoose

theGumbelifthetailindexwasinsignificantandtheFrechetotherwise.

?Giventhedangersofmodelrisk,theestimatedriskmeasureincreases

withthetailindex,asaferoptionisalwaystochoosetheFrechet.

47-201

行業(yè)?創(chuàng)新?憎值

?2.GeneralizedExtremeValueDistribution

>EstimationofEVP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論